
Maximum Likelihood Programming in

Stata

Marco R. Steenbergen
Department of Political Science

University of North Carolina, Chapel Hill

August 2003

Contents
1 Introduction 2

2 Features 2

3 Syntactic Structure 2
3.1 Program Instructions . 3
3.2 Ml Model . 6

3.2.1 Equations . 6
3.2.2 Additional Examples . 7
3.2.3 Options . 8

3.3 Ml Check . 8
3.4 Ml Search . 8
3.5 Ml Maximize . 9
3.6 Monitoring Convergence and Ml Graph . 10

4 Output 10

5 Performing Wald Tests 12

6 Performing Likelihood Ratio Tests 13

7 General Programming Issues 15

8 Additional MLE Features in Stata 8 15

9 References 17

1

1 Introduction

Maximum likelihood-based methods are now so common that most statistical
software packages have “canned” routines for many of those methods. Thus, it
is rare that you will have to program a maximum likelihood estimator yourself.
However, if this need arises (for example, because you are developing a new
method or want to modify an existing one), then Stata offers a user-friendly
and flexible programming language for maximum likelihood estimation (MLE).

In this document, I describe the basic syntax elements that allow you to
write and execute MLE routines in Stata (Versions 7 and 8). I do not intend to
offer an in-depth discussion of all of Stata’s many features—for this you should
consult Gould and Sribney (1999) and Gould, Pitblado, and Sribney (2003).
My objective is merely to provide you with enough tools that you can write a
simple MLE program and implement it.

2 Features

Stata has many nice features, including: (1) quick convergence (under most
circumstances) using the Newton-Raphson algorithm (Stata 8 also offers quasi-
Newton algorithms); (2) a conservative approach to declaring convergence, which
leads to more trustworthy estimates; (3) simplifying features that allow imple-
menting MLE with a minimum of calculus; (4) robust variance estimation; (5)
Wald and likelihood ratio test procedures; (6) a search routine that chooses
improved starting values; (7) estimation under linear constraints; and (8) post-
estimation commands. These features make Stata one of the easiest MLE pro-
grams to work with.

3 Syntactic Structure

Programming and executing MLE routines in Stata requires a specific sequence
of commands. These may be part of an ado file, or they can be entered in-
teractively. The following shows the sequence of commands and explains their
meaning. Optional commands are indicated by an asterisk.

1. Program instructions: The program specifies the parameters and log-
likelihood function. This is done in general terms, so that the commands
can be used in any application where they are relevant. (The program
may be kept in a separate ado file.)

2. ml model:1 This command specifies the model that is to be estimated
(i.e., dependent variable and predictors), as well as the MLE program
that should be run and the way in which it should be run. This command
is application-specific: it specifies the model in terms of the particular set
of variables that is loaded into memory.

1In this document, I indicate Stata commands in print type.

2

3. ml check*: This command checks the program syntax for mistakes. While
optional, it is extremely useful for debugging MLE routines. Beginning
programmers are advised to use this command.

4. ml search*: This optional command causes Stata to search for better
starting values for the numerical optimization algorithm.

5. ml maximize: This command starts the execution of the estimation com-
mands and generates the output.

6. ml graph*: This is an optional command that produces a graph showing
the iteration path of the numerical optimization algorithm. I recommend
using this command so that one can monitor convergence.

3.1 Program Instructions

In most cases, writing and MLE program requires only a couple of lines of
syntax. At least, this is the case if (1) the log-likelihood function meets the
linear form restriction—i.e., the observations are independent—and (2) Stata
derives the first and second (partial) derivatives numerically (these derivatives
are needed for the Newton-Raphson algorithm). In this document, I assume
that these two conditions are met.2

The program is started by entering

program define name

where name is any name up to 32 characters in length. (It is preferable to
choose a descriptive name.) The user may abbreviate program define to pr
de. To end the program, one should type

end

In between these keywords, the user has to declare the parameters and the
log-likelihood function. First, the log-likelihood function and its parameters
have to be labeled. This is done through the command args (which is an
abbreviation for the computer term “arguments”). Next, the log-likelihood
function has to be defined; this is done using the quietly replace command.3

In addition to these specifications, it is often useful to declare the program
version, especially if you are planning to make changes to the program over
time.

2That is, the maximization method is lf (see the discussion of ml model below). Please
note that lf is the easiest approach in Stata but not always the most accurate. However, in
my programming experience I have never encountered an instance in which the results from
lf were misleading.

3“Replace” indicates that the user is substituting a new expression. “Quietly” implies that
Stata does not echo this substitution—i.e., it is not displayed on the screen or in the output.

3

Example 1: To show the use of these commands, consider the simple example
of the Poisson distribution:

f(y|µ) =
µye−µ

y!

Here µ is the parameter that we want to estimate. For a sample of n independent
observations, this distribution produces the following log-likelihood function:

l(µ|y1, y2 · · · yn) =
∑

i

yi ln(µ)− nµ−
∑

i

ln(yi!)

To program this function, we could use the following syntax:

program define poisson
version 1.0
args lnf mu
quietly replace ‘lnf’ = $ML y1*ln(‘mu’)- ‘mu’ - lnfact($ML y1)

end

Let us analyze what this program does. In the first line we define the pro-
gram, calling it poisson. In the second line, we show the version of the program
(version 1.0). The third line provides a name for the log-likelihood function
(lnf) and its one parameter (mu). The fourth line specifies the log-likelihood
function and the fifth line ends the program.

The action, of course, is in the fourth line. This line is based on the argu-
ments specified in args. Because we are referring to arguments, they should
be placed in apostrophes. (In fact, the leading apostrophe is backward leaning
and is typically located on the same key as the tilde; the second apostrophe
is straight and is typically located on the same key as the double apostrophe.)
The fourth line also contains the variable $ML y1, which is the internal label
for the (first) dependent variable. Stata will replace this with an appropriate
variable from the data set after the ml model command has been specified.4

Finally, the fourth line specifies a function. (The last term in this expression,
lnfact($ML y1), stands for ln(y!).)

A careful inspection of the fourth line of code shows that it looks a lot like
the log-likelihood function, except that it does not include summations. In fact,
this line gives the log-likelihood function for a single observation:

l(µ|yi) = yi ln(µ)− µ− ln(yi!)

As long as the observations are independent (i.e., the linear form restriction on
the log-likelihood function is met), this is all you have to specify. Stata knows
that it should evaluate this function for each observation in the data and then
sum the results. This greatly simplifies programming log-likelihood functions.5

4By not referring to a specific variable name, the program can be used for any data set.
This is quite useful, as you do not have to go back into the program to change variable names.

5Keep in mind, however, that this will only work if the observations are independent and
the linear form restriction is met.

4

Example 2: As a second example, consider the normal probability density
function:

f(y|µ, σ2) =
1√

2πσ2
exp

{
−1

2

(
y − µ

σ

)2
}

=
1
σ

φ(z)

where z = (y−µ)
σ and φ(.) denotes the standard normal distribution.6 Imagine

that we draw a sample of n independent observations from the normal distrib-
ution, then the log-likelihood function is given by

l(µ, σ2|y1, y2 · · · yn) = −n ln(σ) +
∑

i

ln[φ(zi)]

We can program this function using the following syntax:

program define normal
version 1.0
args lnf mu sigma
quietly replace ‘lnf’=ln(normd(($ML y1-‘mu’)/‘sigma’))-
ln(‘sigma’)

end

Here normd is φ(.) and ($ML y1-‘mu’)/‘sigma’ is zi. Again, we only have
to specify the log-likelihood function for a single observation. Stata will evalu-
ate this function for all observations and accumulate the results to obtain the
overall log-likelihood.

6To derive the second line of this equation, we proceed as follows. First, we substitute z
in the formula for the normal distribution:

f(y|µ, σ2) =
1√

2πσ2
exp

�−.5z2
	

Next, we compare this result to the standard normal distribution:

φ(z) =
1√
2π

exp
�−.5z2

	

We see that the generic normal distribution is almost identical to the standard normal distri-
bution; the only difference is a term in σ2. Factoring this term out, we get

f(y|µ, σ2) =
1√
σ2

1√
2π

exp
�−.5z2

	

=
1√
σ2

φ(z)

=
1

σ
φ(z)

5

3.2 Ml Model

To apply a program to a data set, you need to issue the ml model command.
This command also controls the method of maximization that is used, but I will
assume that this method is lf—i.e., the linear form restrictions hold and the
derivatives are obtained numerically.7

The syntax for ml model is:

ml model lf name equations [if] [, options]

Here ml model may be abbreviated to ml mod, name is the name of the MLE
program (e.g., poisson), and equations specifies the model that should be esti-
mated through the program. A subset of the data may be selected through the
if statement. It is also possible to specify various options, as will be discussed
below.

3.2.1 Equations

To perform MLE, Stata needs to know the model that you want to estimate.
That is, it needs to know the dependent and, if relevant, the predictor variables.
These variables are declared by specifying one ore more equations. The user
can specify these equations before running ml model by using an alias. It is
also possible to specify the equations in the ml model command, placing each
equation in parentheses.

The general rule in Stata is that a separate equation is specified for each mean
model and for each (co)variance model. For example, if we wanted to estimate
the mean and variance of a normal distribution, we would need an equation for
the mean and an equation for the variance. In a linear regression model, we
would need an equation for the conditional mean of y (i.e., E[yi|xib]) and for
the variance (the latter model would include only a constant, unless we specify
a heteroskedastic regression model). In a simultaneous equations model, there
would be as many equations as endogenous variables, plus additional equations
to specify the covariance structure.

Aliasing. We can specify equations before the ml model command, giving
them an alias that can be used in the command. For example, for the Poisson
distribution we could specify the following equation:

mean: y=

7The name lf is an abbreviation for linear form. If the linear form restrictions do not
hold, then the user may choose from three other maximization methods: d0, d1, and d2.
The difference between these methods lies in the way in which the first and second (partial)
derivatives are obtained. Both the first and second derivative are obtained numerically with
d0. With d1, the user has to derive the first derivative analytically (i.e., through calculus),
while the second derivative is obtained numerically. With d2, both derivatives are obtained
analytically; this is generally the most accurate approach. You should note that the use of d0,
d1, and d2 necessitates additional lines of code in the program to specify the log-likelihood
function more completely and, if necessary, to specify the first and second derivatives (see
Gould and Sribney 1999; Gould, Pitblado, and Sribney 2003).

6

We have now generated an equation by the name or alias of “mean” that specifies
the model for µ in the Poisson distribution. The equation specifies the dependent
variable on the left-hand side—this is the name of a variable in the data set.
The right-hand side is empty because there are no predictors of µ (other than
the constant).8

To estimate this model we type:

ml model lf poisson mean

Here lf is the maximization method, poisson is the name of the maximum
likelihood program, and mean is the alias for the equation specifying the mean
model. The alias will appear in the output and can make it easier to read.

Direct Specification. We can also specify the equation directly in the ml
model command. For the Poisson distribution, we would do this as follows:

ml model lf poisson (y=)

Since we have not named the equation, it will be labeled in the output as eq,
followed by a number.9

3.2.2 Additional Examples

Example 1: Earlier we wrote a program, titled normal, to estimate the para-
meters of a normal density function. Imagine we want to apply this to a variable
named Y. Then we need the following specification of the ml model command:

ml model lf normal (Y=) (Y=)

Notice that we now have specified two equations. The first equation calls for
the estimation of µ. The second equation calls for the estimation of σ.

Example 2: Now imagine that the normal density describes the conditional
distribution of Y given two predictors, X and Z. We assume that the conditional
variance of Y is constant and given by σ2. We also assume that the conditional
mean of Y is given by β0 + β1X + β2Z. In other words, we are considering the
classical linear regression model under the assumption of normality. To estimate
this model, one should issue the following command:

ml model lf normal (Y=X Z) (Y=)

The first equation calls for the estimation of the conditional mean of Y, which
is a function of the predictors X and Z. The second equation pertains to the
estimation of σ, which is constant so that no predictors are specified.

One sees that the estimation of a normal regression model requires no ad-
ditional programming compared to the estimation of the mean and variance of

8If there are predictor variables, these should be specified after the equal sign.
9The direct and aliasing methods may be combined. For details see Gould and Sribney

(1999) and Gould, Pitblado, and Sribney (2003).

7

a normal distribution. This minimizes the burden of programming and gives
MLE routines a great deal of “portability.” Both of these features are important
benefits of Stata.

3.2.3 Options

There are two options that can be specified with ml model, both of which
produce robust variance estimates (or Huber-White or sandwhich estimates).

(1) robust generates heteroskedasticity-corrected standard errors.
(This may be abbreviated as rob.)
(2) cluster(varname) generates cluster-corrected standard errors,
where varname is the name of the clustering variable. (This may be
abbreviated as cl.)

Both of these commands may be specified with the lf maximization method.10

A discussion of robust variance estimation can be found in Gould and Sribney
(1999), Gould, Pitblado, and Sribney (2003), and in advanced econometrics
textbooks (Davidson and MacKinnon 1993; Greene 2000).

3.3 Ml Check

It is useful to check an MLE program for errors. In Stata, you can do this by
issuing the command ml check. This command evaluates if the program can
compute the log-likelihood function and its first and second derivatives. If there
is a problem with the log-likelihood function, or with its derivatives, ml check
will let the user know. Stata will not be able to estimate the model before these
problems are fixed.

3.4 Ml Search

The Newton-Raphson algorithm needs an initial guess of the parameter esti-
mates to begin the iterations. These initial guesses are the so-called starting
values. In Stata, the user has two options: (1) use a default procedure for
starting values or (2) do a more extensive search.

The default procedure in Stata is to set the initial values to 0. If the log-
likelihood function cannot be evaluated for this choice of starting values, then
Stata uses a pseudo-random number generator to obtain the starting values. (It
will regenerate numbers until the log-likelihood function can be evaluated.) This
procedure is a quick-and-dirty way to start the Newton-Raphson algorithm.

Through ml search (which may be abbreviated as ml sea) the selection
of starting values can be improved. The ml search command searches for
starting values based on equations. A nice feature here is that the user can
specify boundaries on the starting values. For example, before estimating the
Poisson distribution, we could specify

10However, other maximization methods may not allow these options or may require ad-
justments in the program.

8

ml search 1 3

This causes the search command to pick starting values for µ that lie between
1 and 3. If the ML estimate lies within these bounds, beginning the iterations
there can speed up estimation considerably. Thus, I recommend using the ml
search command (even if you do not specify bounds), although it can be by-
passed.

3.5 Ml Maximize

None of the commands discussed so far actually causes Stata to generate a table
of parameter estimates. To do this, the MLE program has to be executed and
this is done through the ml maximize command. You simply type

ml maximize [, options]

(which may be abbreviated to ml max) and the estimation process commences—
at least, when the program is correct and there are no “funky” things in the
data.

It is possible to add several options to the ml maximize command that con-
trol the output and convergence. In general, I recommend against tinkering with
these features, but for the sake of completeness I will list the most important
options.

(1) nolog suppresses the iteration log. This reduces the length of
the output, in particular if convergence problems are encountered
(see below). Since the iteration log contains important information
about convergence, one should not suppress it too quickly.
(2) iterate(##) sets the maximum number of iterations (##). The
default value is 16000. Since this default is very large—it could take
hours to reach this limit—there is usually no reason to change it.
(3) ltolerance(##) sets the tolerance, which controls the point
at which Stata cuts off the iterations. Specifically, convergence is
declared when

∣∣∣∣
lj − lj−1

lj−1

∣∣∣∣ ≤ ltolerance

where lj is the log-likelihood function for the set of estimates gen-
erated in the jth iteration and lj−1 is the log-likelihood function
for the set of estimates in the previous iteration. The default of
ltolerance is 1e-7. By increasing this value, convergence can be
speeded. However, this is a risky approach because the resulting
estimates may not be true maximum likelihood estimates. Hence,
the decision to change ltolerance should not be made lightly.
(4) difficult forces Stata to put in extra effort to estimate dif-
ficult log-likelihood functions. Such functions tend to have many
ridges, flat areas, and saddle points so that they are not concave.

9

This makes it impossible to compute the direction vector, which is
used to update estimates. The difficult option prompts Stata
to determine if the direction vector exists. If not, then the pro-
gram supplements the Newton-Raphson algorithm with a variation
on the steepest ascent method to obtain new estimates (see Gould
and Sribney 1999; Gould, Pitblado, and Sribney 2003). Specifying
difficult increases estimation time, so I do not suggest using it
by default. However, if Stata generates many warnings about non-
concavity, especially on later iterations, it may be worthwhile to
repeat estimation using this option.

3.6 Monitoring Convergence and Ml Graph

Even when the program produces output, it is useful to check the convergence
of the Newton-Raphson algorithm. One should pay attention to three pieces of
information. First, the algorithm should converge relatively quickly. A dozen or
so iterations would generally not worry us, especially not for complex estimation
problems. But if the algorithm requires a large number of iterations (e.g., in
the hundreds), then this could indicate a serious problem.

Second, one should pay attention to warning messages about the concavity of
the log-likelihood function. The message not concave, which follows the value
of the log-likelihood function in the iteration log, indicates that the log-likelihood
function is essentially flat at a particular iteration. This means that Stata
cannot establish a direction vector to guide new parameter estimates. if this
warning message occurs early in the iteration process, it can be safely ignored.
However, if this message appears on the last iteration, then this indicates a
serious problem. One cannot trust the parameter estimates in this case and
should consider re-estimating the model with the difficult option (see above).

Third, one should monitor the convergence path. If we place the iterations on
the horizontal axis and the corresponding values of l on the vertical axis, then we
should ideally see a concave (marginally declining) function. That is, initially
the changes in the log-likelihood function should be large between iterations.
However, nearing the end of the iterations, these changes should be relatively
tiny. Small perturbations of this pattern need not worry us. However, if the
iteration function is convex (or a straight line), then we should be worried. This
could indicate a bug in the program or an ill-behaved log-likelihood function.

Plotting the log-likelihood against the iterations in Stata is easy. All one
has to do is to issue the command

ml graph

(which may be abbreviated as ml gr) after running ml maximize. I recommend
that you always create this plot, as it reveals a lot about convergence.

4 Output

After running a MLE program, Stata will produce the following output.

10

Figure 1: Stata MLE Commands and Output

11

(1) An iteration log, showing the iterations and the value of the
log-likelihood at each iteration. (This log will not be shown if you
specified nolog as an option for the ml maximize command.)
(2) The final value of the log-likelihood function. (This is always
shown, even if you have specified the nolog option.)
(3) The number of observations on which the estimation is based.
(4) The Wald chi-square test and its (asymptotic) p-value.
(5) For each equation, the parameter estimates, their estimated stan-
dard errors, the test statistics and their p-value, and the upper and
lower bounds of the 95% confidence intervals. If the option robust
or cluster was specified on the ml model command, then robust
standard errors are reported. The test statistic is the ratio of the
estimate to its standard error.

Figure 1 shows the output generated by the “poisson” program that we
created earlier (in Example 1 of section 3.1) as applied to some artificial data.
Following the ml max command we first see the iteration history (or iteration
log). It took the program 3 iterations to find the ML estimate for µ. Notice that
the initial iteration produced an error message because Stata started by setting
µ̂ = 0 and for this value ln(µ), which is part of the log-likelihood function, is
not defined. On the final iteration, the log-likelihood function was -20.908921;
this value is repeated underneath the iteration log. To the right of the (final)
log-likelihood we find the number of observations and the Wald chi-squared and
its associated p-value (see below). The bottom portion of the output shows
the estimate (1.5), the estimated standard error (.3872988), the z-test statistic
(3.87) and its associated p-value (0.000), and the lower and upper bounds of the
95% confidence interval (.7409092 and 2.259091, respectively).

The optional ml graph command produces the output in Figure 2 (Stata will
show this output in a separate window). The horizontal axis of this graph shows
the iteration number and the vertical axis, labeled ln LO gives the value of the
log-likelihood function at that iteration. The iteration path shown in Figure 2
is precisely what we would like to see: as the iterations progress, changes in
the log-likelihood function become ever smaller. (In fact, this example shows
no change from the 2nd to 3rd iteration because there is a closed form solution
for the ML estimator.)

5 Performing Wald Tests

When using the ml maximize command, Stata by default reports a Wald test
statistic and its p-value. This statistic compares the fit of a model including
predictors to the fit of a model excluding all of those predictors. The first model
is the unconstrained model, while the second model is the constrained model.11

11When the model contains no predictors, Stata reports a period for the Wald test statistic
and its p-value.

12

Figure 2: Graph Produced by ml graph

Sometimes we may want to exclude only a subset of the predictors. In this
case, we can use the test command to obtain the relevant Wald test statistic.
The test command is very easy to use. After running ml max, you simply type
in test followed by the variables you want to exclude from the model. Stata
will then show the relevant Wald test statistic and its p-value.

The test command can be used to test any hypothesis that involves a linear
combination of the parameters. Figure 3 shows a number of examples per-
taining to the classical linear regression model with normally distributed errors
(Example 2 in Section 3.1).

6 Performing Likelihood Ratio Tests

The Wald test does not actually estimate the constrained model, but evaluates
its fit based on the difference between the parameter estimate and its constrained
value, as well as the curvature of the log-likelihood function (as measured by
the second derivative). A more precise approach to testing is to explicitly esti-
mate the constrained model and to perform a likelihood ratio test. The Stata
command for doing this is lrtest. This test compares the values of the log-
likelihood functions for the constrained and unconstrained models and computes
the p-value of the resulting likelihood ratio test statistic.

To use lrtest, a specific sequence of estimation commands is typically fol-
lowed.

(1) Estimate the unconstrained model.
(2) Save the statistics associated with the unconstrained model:

13

Figure 3: Wald Test Examples

14

lrtest, saving name

where name is an arbitrary name of no more than 4 characters.
(3) Estimate the constrained model.
(4) Type lrtest to perform the likelihood ratio test.

For example, consider the regression model shown in Figure 3. The following
sequence of commands allows one to perform the likelihood ratio test for the
null hypothesis that β1 = β2 = 0.

1. ml model lf normal (Y=X1 X2 X3) (Y=)

2. ml max

3. lrtest, saving(0)

4. ml model lf normal (Y=X3) (Y=)

5. ml max

6. lrtest

The results are shown in Figure 4.

7 General Programming Issues

MLE is a part of Stata’s programming language. The following general pro-
gramming commands will prove quite useful (see Stata 2001).

(1) program dir: This command shows a list of programs (includ-
ing ado files) that are currently in memory. If a program is already
in memory, you cannot define it again.
(2) program drop: This command drops a program from memory.
Once this command is issued, Stata can no longer execute the af-
fected program(s).

8 Additional MLE Features in Stata 8

The syntax described up to this point will work in Stata Version 7 and Version
8. However, if you have access to Stata 8, you should use it because it has a nice
set of additional features. Here, I describe the most important of these features;
for a complete discussion see Gould, Pitblado, and Sribney (2003).

Quasi-Newton Algorithms. In Stata 7, numerical optimization always oc-
curs through the Newton-Raphson algorithm (at least, under normal condi-
tions). Stata 8 allows the user to rely instead on one of three different quasi-
Newton algorithms, namely BHHH, DFP, and BFGS.12 Specification of the
algorithm occurs in the ml model command, as an option:

12Fisher scoring is not available in Stata 8, but one would generally not use this when
quasi-Newton methods can be used instead.

15

Figure 4: Likelihood Ratio Test Examples

16

ml model lf name equations [if] , technique(algorithm)

where algorithm is the abbreviation of the algorithm, which can be nr for
Newton-Raphson (the default), bhhh for Bendt-Hall-Hall-Hausman, dfp for
Davidson-Fletcher-Powell, or bfgs for Broyden-Fletcher-Goldfarb-Shanno.13

Linear Constraints. Stata 8 allows maximum likelihood estimation of mod-
els with linear constraints. Constraints are specified as an option with the ml
model command. More specifically, the constraint option invokes a constraint
that was defined previously. For example, consider the linear regression model
yi = β0 +β1xi +β2zi +εi with εi ∼ N(0, σ2). Now imagine that we have a priori
reason to believe that β2 = −β1 (or put differently, β1 + β2 = 0). We could
build this constraint into the estimation by issuing the following commands:

constraint 1 Z=-X
ml model lf normal (Y=X Z) (Y=), constraint(1)
ml max

The program will now find estimates that satisfy the constraint, aliased as the
number 1. (Whether these estimates are true ML estimates depends, of course,
on the validity of the constraint.)14

9 References

Davidson, Russell, and James G. MacKinnon. 1993. Estimation and Inference
in Econometrics. New York: Oxford University Press.

Gould, William, and William Sribney. 1999. Maximum Likelihood Estimation
with Stata. College Station, TX: Stata Press.

Gould, William, Jeffrey Pitblado, and William Sribney. 2003. Maximum Like-
lihood Estimation with Stata. 2nd ed. College Station, TX: Stata Press.

Greene, William H. 2000. Econometric Analysis. 4th ed. Upper Saddle River:
Prentice Hall.

Stata. 2001. Stata Programming Manual, Release 7. College Station, TX: Stata
Press.

13It is also possible to switch between different algorithms. For details see Gould, Pitblado,
and Sribney (2003).

14This example can serve to show a couple of other changes in Stata 8. First, while the
normal program that we defined earlier will work, Stata 8 also allows a more simplified version
of this program:

program normal2

Version 8.1

args lnf mu sigma

quietly replace ‘lnf’=ln(normden($ML y1,‘mu’,‘sigma’))

end

Notice that we can now write program instead of program define and that the log-likelihood
function is simpler. Second, to apply this program we can issue the following command:

ml model lf normal2 (Y=X Z) /sigma

The instruction /sigma will cause Stata to output an estimate of σ.

17

