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Abstract

The aim of the paper is to provide criterions based on sound ethical grounds for inequal-
ity and welfare comparisons in a multi-dimensioned setting. We provide a unified treatment of
multi-dimensional egalitarianism and of welfare analysis with needs using a compensation principle
and encompassing the case of continuous and discrete distributions. Among the attributes of the
individual utility, at least one, (in most cases the current period income) can be used to compensate
attributes like past-income, income of the past generation, health, education, needs due to family
size. Post-Rawlsian distributive justice (Dworkin, Roemer) argues for compensating an attribute,
provided that persons should not be responsible for it. The main theorem exhibits two necessary
and sufficient second degree stochastic dominance conditions for the comparison of bivariate dis-
tributions. In the case of a discrete compensated variable, the distributions of the compensating
variable have to satisfy a condition which degenerates to the Sequential Generalized Lorenz test in
case of identical marginal distributions of the compensating variable. Moreover, the distributions
of the compensated variable must satisfy the Generalized Lorenz test. Extensions to the case of a
trivariate distribution are provided, where we single out three configurations, the full compensation
the chain compensation and the single compensation.
Keywords: Multi-dimensioned Welfare, Compensation, Dominance, Lorenz Criterion.
JEL Codes: D3, D63, I31

1 Introduction

Inequality among a group of people, has often been measured in terms of income (e.g. Kolm
(1969), Atkinson (1970), Sen (1973)). However, social scientists and economists (Sen (1987),
(1992)) have argued that income is not a sufficient statistic for welfare and should be supple-
mented by other attributes of well-being such as health, education, literacy. Income varies
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over time and comparing inequality of intertemporal income streams provides another exam-
ple of a multidimensional framework. Among the attributes, the income or the education of
the parents might also be considered for inequality comparisons among dynasties. Last but
not least, households are the elementary statistical units in many data sets, which implies
accounting for differences in family size and in other household characteristics for welfare
comparisons among these statistical units.
The derivation of social dominance conditions for multidimensioned welfare analysis is

arguably one of the main challenges of modern welfare analysis. The multi-dimensioned wel-
fare literature appears in two veins. In the first one, called hereafter the multi-dimensioned
one, which can be traced back to Kolm’s paper (1977), all attributes have symmetric roles.
Multidimensional dominance criteria consist in seeking unanimity among large classes of so-
cial welfare functions over the ranking of allocations. A bunch of papers have been devoted
to this topic (Huang, Kira and Vertinsky (1978), Marshall and Olkin (1979, Chapter 15),
Atkinson and Bourguignon (1982), Le Breton (1986), Bourguignon (1989), Koshevoy (1995,
1998) and Koshevoy and Mosler (1996)). In particular, Atkinson and Bourguignon (1982),
below denoted AB1, propose dominance relationships for various classes of utility functions
defined by the signs of their derivatives up to the fourth order. Nevertheless, it seems fair
to say that no simple criterion to check multidimensional dominance has reached popular
support among applied economists and even among theorists. This unsuccess stems from
the lack of intuitive appeal of some conditions on utility functions. Up to now, one does
not dispose of well-accepted normative conditions to anchor multi-variate stochastic domi-
nance analysis, in contrast with the central role of transfer axioms for univariate stochastic
dominance.
The landmark article by Atkinson and Bourguignon (1989), below denoted AB2, gen-

erates a second type of multi-dimensioned welfare analyses. The attributes are no longer
symmetric and the focus is on the measurement of income inequality accounting for house-
holds’ different needs, generated for instance by different family size. Then, one attribute
(e.g., family size) is used to divide the population into homogeneous groups, while social wel-
fare defined from the second attribute (income) is considered within the groups and in the
whole society. AB2 have provided a simple and elegant test for making welfare comparisons
in such a context : the Sequential Generalized Lorenz (SGL) quasi-ordering, which extends
the Generalized Lorenz (GL) quasi-ordering (Shorrocks (1983)) to the situation where the
population is partitioned into subgroups on the basis of needs. A growing number of papers
deal with this “needs approach” and a non exhaustive list would include Bourguignon (1989),
Jenkins and Lambert (1993), Shorrocks (1995), Ebert (1995, 1997, 1999, 2000), Chambaz and
Maurin (1998), Ok and Lambert (1999), Moyes (1999), Bazen and Moyes (2001), Lambert
and Ramos (2002), Fleurbaey, Hagneré and Trannoy (2001a and b).
It is important to notice that in the second approach, the marginal distribution of needs

has been neutralized. In the original paper by Atkinson and Bourguignon (1989), the mar-
ginal distribution of needs is assumed to be identical in both populations. Nevertheless,
Jenkins and Lambert (1993), Chambaz and Maurin (1998) have shown how the SGL test
may be extended to the case where distributions of needs differ. Moreover, Moyes (1999)
and Bazen and Moyes (2001) have modified the assumption added by Jenkins and Lambert
so as to allow the marginal distribution of needs to play a role in performing the comparison
between two distributions. Doing so makes the two approaches less distinct and it raises the
question of the relevance to consider two distinct approaches.
For an appraisal of a public policy, the rationale to consider these two approaches seems

the following. To make the discussion more concrete, assume that the two attributes are
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income and the health status. Governement intervention may influence the two marginal
distributions. For example fiscal policy has a direct impact on the income distribution,
while a public health care affects the health status distribution. If one wants to evaluate
the sole consequences of the fiscal policy, the needs approach, keeping constant the marginal
distribution of health status seems appropriate, but if the impacts of the two policies have
to be assessed, the multidimensioned has to be called for. Hence, there is a kind of division
of labor between the two approaches but it would be helpful if they were developped in a
consistent way. One aim of this paper is to provide such an integration.
The marginal utility function is supposed to be identical across agents with respect to each

attribute and positive and decreasing. However, this standard assumption is not sufficient to
obtain critera with a sufficient discriminatory power, as shown by AB2 in the needs context.
The basic idea of the paper is to consider that among all the attributes, at least one can

be used to make direct transfers between individuals. In the income-health example, it is
the income of the current period which plays the role of the compensating variable. The
other variables are the compensated variables (income in the past, income of the past gen-
eration, health, education, family size and so on). Many recent contributions in distributive
justice (see for an overview, Roemer (1996), Fleurbaey (1995)) provide ethical grounds for
compensating an attribute. The broad idea is that welfare differences are acceptable when
they are due to characteristics for which agents can be deemed responsible. On the contrary,
individuals should be compensated for attributes for which they cannot be held responsi-
ble. The discussion on the exact location of the cut between the two sets of characteristics
is far from closed (Dworkin (1981), Sen (1985,1992), Roemer (1985,1993), Arneson(1989),
Cohen(1989)). For instance, Dworkin proposed to include preferences in the former category
and resources (including internal one like innate talent) in the latter. Atkinson and Bour-
guigon (2000), who allude to the possibility of compensation p.46, seem to endorse Dworkin’s
position : “Differences in innate abilities, needs or handicaps would seem to require some
kind of compensation, but not differences in effort, resulting from differences in tastes or
preferences”. Schokkaert and Devooght (1998) present experimental results from simple sur-
vey questions suggesting that this broad idea of compensation for “uncontrollable” factors
find some echo from a majority of a sample of respondents. Still, the reader does not have
to agree with these philosophical premices to accept the validity of our results. It is suffi-
cient for us that some compensation can be defended on some grounds, whatever they are,
exogeneity of some attributes or other reasons such as basic egalitarianism.
In a one dimension setting, it is well known that the two statements (a) and (b) are

equivalent: (a) ‘Pigou-Dalton’s transfers improve welfare’; (b) ‘The utility function which
intervenes in an additively separable welfare function is concave’. In the same vein, we cap-
ture the idea that compensation is good for social welfare, meaning that transfering income
from an healthy to an handicapped person having the same level of income, is recommanded,
by imposing a negative sign on the cross derivative of the utility function between the com-
pensating variable and the compensated one. In others words, the marginal utility of income
is decreasing with the level of the compensated variable. For instance the healthier you are,
the lower your claims are to a redistribution, other things being equal.
Performing compensation seems all the more appropriate that handicapped people often

belong to the bottom part of the income distribution. A wealthy person does not seem
to be a good candidate for public funds, even if she suffers from some disadvantage. We
supplement our welfare analysis by an additional assumption trying to catch this intuition:
the decrease in the marginal utility of income with the level of the compensated variable is
all the smaller when the agent is rich. For instance, the differences in marginal utilities of
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income between a healthy rich person and an ill rich person may be tiny, implying that the
second one does not deserve to be compensated for his bad health.
The reader aware of the literature will recognize that these assumptions are akin to

assumptions made by AB2 in a context where the compensated variable is discrete. In
other words, our analysis plugs AB2 assumptions into AB1 framework. How surprising this
might appear, such an approach has not been pursued so far, to the best of our knowledge.
The obtained criterion would not come to a surprise to specialists, but it provides a useful
test which encompasses the needs approach in the multi-dimensioned one. If a distribution
of attributes dominates another one then two conditions are fulfilled. First, in the case
of a discrete compensated attribute, the distributions of the compensating variable meet a
Sequential Restricted Generalized Lorenz test (SRGL), a test linked to the SGL test. When
the marginal distribution of the compensating variable is considered as fixed, the SRGL
test degenerates to the SGL test. Second, the distribution of the compensated variable
satisfies the GL test. If we take again the income-health example, to get dominance, namely
an improvement in social welfare in moving from joint-distribution 1 to joint-distribution
2, the income distribution 1 must SRGL-dominates income distribution 2 and the health
distribution 1 must GL-dominates income distribution 2.
Such a criterion provides a simple test of welfare improvements in a multidimensional

setting, with two additional advantages. First it is in tune with the criterion obtained in the
needs analysis and second it corresponds to dominance for a class of utilities functions that
have ethical and intuitive meaning. Moreover, such a criterion can be extended to variants of
ethical conditions (for example some transfer sensitivity properties), or to the case of more
than two attributes.
The paper is organized as follows. The next section provides the main result with two

attributes and gives the conditions to verify in terms of second stochastic dominance condi-
tions or inverse stochastic conditions. A comparison with results obtained in the literature
is provided and transfer sensitivity as defined by Shorrocks and Foster (1987) is also intro-
duced. In Section 3, two compensated variables are supposed to matter for social welfare.
Finally, Section 4 concludes. All proofs of propositions are gathered in the Appendix.

2 Two Goods Case Result

Let us consider the bivariate distribution of a random variable X = (X1,X2) where by
convention subscript 1 is used for the compensating good and 2 for the compensated one.
We assume that the support of X is the rectangle [0, a1] × [0, a2] = A1×A2 where a1 and a2
are in R+. We denote the corresponding joint cumulative distribution function by F (x1, x2)
and by F1 and F2 the respective marginal cdf of X1 and X2. Fi (i = 1, 2) are any positive
increasing and right-continuous functions with range [0, 1]. It is important to notice that
we do not assume F (x1, x2) to be continuous or discrete and all theorems are proved for
the most general case. By Jierina’s theorem, (see for instance Métivier p.142), there exists a
conditional cumulative distribution function of X1 with respect to X2 denoted F 2

1 such that
for any (x1, x2) ∈ A1 ×A2,

F (x1, x2) =

Z
[0,x2]

F 2
1 (x1|X2 = t)dF2(t). (1)

Another joint cumulative distribution function is denoted F ∗. Let U(x1, x2) be the utility
function which can convey private values as well as social ones. It is assumed to be Lebesgue
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integrable with respect to F and F ∗. The social welfare function associated to F is assumed
to be additively separable and is computed as

WF :=

Z
A1×A2

U(x1, x2)dF (x1, x2))

or using the decomposition expressed by (1) this may be written

WF =

Z
A2

Z
A1

U(x1, x2)dF
2
1 (x1|X2 = x2)

 dF2(dx2) (2)

where the marginal distribution according to X2 appears distinctly. The inner expression in
(2) is the welfare of the subpopulation of individuals having in common the same amount
of good 2 and the total welfare is the sum of these subpopulations welfares over x2. This
expression of welfare generalizes AB2’ s one (expression 12.3 p.353) for which F2 is supposed
to be discrete and F 2

1 continuous.
The change in welfare between two distributions F and F ∗ is given by

4WU :=WF −WF∗ =

Z
A1×A2

U(x1, x2)4dFx1, x2))

where 4F denotes F − F ∗.
Dominance in the welfare literature is usually defined as unanimity for a family of social

welfare functions based on a set of specific utility functions.

Definition 2.1 Fdominates F ∗ for a family U of utility functions if and only if 4WU ≥ 0
for all utility functions U in U. This is denoted FDU F ∗.

U is assumed to be continuously differentiable to the required degree. The partials with
respect to each variable are denoted by subscripts.

2.1 A central result

We start with the set U2 of increasing utility functions concave in each of their arguments
and respecting the following signs of the partials:

U2 = {U1, U2 ≥ 0, U11 ≤ 0, U22 ≤ 0, U12 ≤ 0, U121 ≥ 0}1. (3)

Another way to describe this set is to introduce the definition of a non-increasing increments
utility function.
A utility function is said to have non-increasing increments if

u(x+ h)− u(x) ≥ u(y + h)− u(y)

for all x, y ∈ Rc
+ such that x ≤ y, and for all h ∈ Rc

+. When u is twice continuously
differentiable on Rc

+, then u has non-increasing increments if and only if u00jk ≤ 0 ∀j, k ∈ L,
a condition known under the label of ALEP substituability2 (see Chipman (1977)). When

1The class U1will be introduced later on in the text.
2ALEP stands for Auspitz-Lieben-Edgeworth-Pareto.
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a person gets more affluent in each dimension, marginal utility is required to decrease in
each dimension. Then we can describe the set U2as the set of increasing, ALEP substituable
utility functions respecting moreover U121 ≥ 0.
We offer three illustrations which may support the negativity of the cross second-order

partial as a reasonable requirement on the social evaluation function in some circumstances
and the other signs of the partials as well.

Example 2.1 Handicap to individual well-being

The first example is when the opposite of the second attribute is seen as an handicap to
the individual well-being. A bad health, a true handicap comes to mind as natural examples.

Example 2.2 Mobility measurement

The second example is in the domain of mobility measurement. Suppose that we look
for dominance conditions under which we are able to rank mobility processes between two
generations, the sons’one and the fathers’one: the first attribute stands for the rank of the
son in the son’s income distribution while the second attribute figures out the rank of the
father in the father’s income distribution. F (x1, x2) gives the proportion of couples son-
father, such that son gets a rank at most equal to x1, while father’s rank was at most equal
to x2. Atkinson (1981) provides conditions under which the social evaluation function can
be described in an additive way with a negative sign for the cross second-order partials of
the "utility function" with the two ranks as attributes.

Example 2.3 Family size

Differences in family size (n) is one of the favourite example of differences in need. Sup-
pose that attribute 2 is the deviation to some maximal family size n, i.e, x2 = n−n, while the
first attribute is household income (y). We investigate at which conditions U(x1, x2) belongs
to U2 or equivalently a household utility function u(y, n), where family size is treated as a
real variable for convenience, satisfies uy ≥ 0, uyy ≤ 0, un ≤ 0, unn ≤ 0, uyn ≥ 0, uyny ≤ 0,
namely, a child counts as a social cost and not as as a social benefit.
They are many ways to deal with such a question. First consider the common practice

of equivalizing income. When a particular equivalence scale function e(n) is chosen, social
welfare can be computed by aggregating the utility levels of equivalent incomes defined as
y

e(n)
over the population. In this framework, Ebert (1999) proposed to adopt the following

household utility function:

u(y, n) = e(n)v

µ
y

e(n)

¶
. with e0(n) ≥ 0

Assuming v0 ≥ 0 and v00 ≤ 0, it is readily shown that it ensures uy ≥ 0, uyy ≤ 0 and uyn ≥ 0.
Yielding uyny ≤ 0 is more demanding and requires that v000 ≥ 0, and a little bit more,
precisely that the elasticity of v00 with respect to equivalent income must be larger than 1 in
absolute terms. An isoelastic function with respect to income

v(y) =
1

1− β
x1−β, with 0 ≤ β < 1 (4)

satisfies the above conditions, (the elasticity of v00is equal to 1+β) but anybody will recognize
that they are unduly restrictive. Now,
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un = e0(n)(v(
y

e(n)
))(1− �)

with ε = y
e(n)

v0( y
e(n)
), the elasticity of v with respect to equivalent income. Assuming either v

negative, which is immaterial, and � ≤ 1 or v positive and � ≥ 1 provide the requested sign,
i-e, an additional member is viewed as a cost. Finally,

unn = e00(n)(v(
y

e(n)
)(1− �) +

y2

(e(n))3
v00(

y

e(n)
). (5)

In the case where e00(n) ≥ 03, the conditions ensuring the negativity of un guarantees the
negativity of unn as well. It is worth it to mention that a parametric equivalence specification
proposed by Banks and Johnson (1994), e(n) = nθ with 0 < θ ≤ 1, does not respect the
requirement of the convexity of the equivalence function with respect to family size. In
summary, a linear equivalence scale and an isoelastic ffunction with respect to income with
an elasticiy smaller than 1 does the job.
Not everybody is pleased with the concept of an equivalence scale and one maysprefer

a more structural approach where the allocation of the family budget among its member is
explicitely allowed for. Here we pursue an approach suggested by Bourguignon (1989) who
investigated what are the properties of the indirect household utility function in a Samuelson’
s model of the family in presence of public goods. It is assumed that each individual is
endowed with the same continuous, increasing and quasi-concave utility function V defined
on two attributes, a private good x and a good g which is public within the family. Assume
that each family of size n behaves like a utilitarian society4. It allocates the household budget
y such

max
x,g

nV (x, g) / nx+ g = y. (6)

The FOC is given by
n(Vx − nVg) = 0.

Let x∗ be the optimal solution. We assume that the private good is normal which requires
−Vxg + nVgg < 0. It turns out that this condition implies x∗n ≤ 0 as well. Introducing the
demand functions x(y, n) and g(y, n) associated to the above maximization program, we
define the indirect utility function

u(y, n) = nV (x(y, n), g(y, n))

Bourguignon claimed that the condition uyn ≥ 0 is not ensured and depends upon the
elasticity of substitution between private and public consumption (e.g., note 2 p.71). The
computations of the derivatives of the indirect utility functions yield

uy = nVg ≥ 0
3The opposite case, e00(n) < 0, is a dead end since the first term in 5 will be positive.

4The same reasoning holds if we only assume that the household allocate goods in an efficient way. For
the problem in touch, it is easier to consider that individuals (with the same utility function) are treated in
a symmetric way.
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uyy = n
VggVxx − V 2

xg

Vxx − 2nVxg + n2Vgg
≤ 0

thanks to the quasi-concavity assumption;

un = V − nx∗Vg ≤ 0
if V < 0 which is immaterial;

unn = −x∗(2 + ηn)Vg − nx∗x∗nVxg + x∗(1 + ηn)Vgg

with ηn =
nx∗n
x∗ the elasticity of the individual private consumption to family size,

uyn = Vg + nVgxx
∗
n − Vggx

∗(1 + ηn).

If ηn > −1,and Vgx < 0 then uyn ≥ 0 and unn ≤ 0.Therefore, provided that we admit that
an increase of family size of 10% does not decrease the individual consumption of more than
10% and provided that public good and private consumption are ALEP substitutes, we get
all the needed signs for the first order and second order partials. Intuition seems lost when
we investigate the conditions under which we may obtain the required sign for uyny. In
conclusion of this example related to family size, the signs of the partials involved in the
U2-class seem microbased but the sign of the third-order partial,
In order to present the result which expresses the conditions to be satisfied in terms of

second-degree stochastic dominance, it is convenient to define

Hi(xi) =

xiZ
0

Fi(s)ds, i = 1, 2

and

H1(x1;x2) =

x1Z
0

F (s, x2)ds. (7)

In that case, we obtain the following result of multi-variate stochastic dominance.

Proposition 2.1 Let F and F ∗ two cdfs.

FDU2F ∗ (A1)

m
4H2(x2) ≤ 0 , ∀x2 ∈ X2 (B)

4H1(x1;x2) ≤ 0, ∀x2 ∈ X2, ∀x1 ∈ X1 (C)

(B) is the standard second degree stochastic dominance expression for variable 2, while
(C) is a mixed second degree stochastic dominance term, where we integrate the cdf of
the joint distribution with respect to variable 1. In particular, (C) implies second degree
stochastic dominance for variable 1 as well.

Remark 2.1 If we consider the twin class of U2,U2∗ = {U1 ≥ 0, U2 ≤ 0, U11 ≤ 0, U22 ≥
0, U12 ≤ 0, U121 ≥ 0} where the second attribute appears as a bad with a desutility increasing
and convex, it is sufficient to modify condition B in 4H2(x2) ≥ 0 to obtain a dominance
result for the U2∗ class.
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We can compare our result with the most significant results obtained by AB1. Our class
is clearly intermediate between the first class they are interested in defined as follows:

UAB11 = {U1, U2 ≥ 0, U12 ≤ 0}. (8)

which has a flavour of first degree stochastic dominance and the second class given by

UAB12 = {U1, U2 ≥ 0, U11 ≤ 0, U22 ≤ 0, U12 ≤ 0, U121, U212 ≥ 0, U1122 ≤ 0}. (9)

The condition U221 may be interpreted in terms of transfer sensivity (see the set U4
below) but, more importantly, put together with U21 ≤ 0, it supports the idea that attribute
2 can compensate for deficiencies in attribute 1. UAB11 or UAB12 treats symetrically the two
variables while there is an asymmetry in the way they are considered in U2. For the sake of
completeness, we remind the results obtained by AB1.

Theorem 2.2 Let F and F ∗ two cdfs admitting a density.

FDUAB11F
∗ (A)

m
∆F (x1, x2) ≤ 0, ∀x1 ∈ X1 ,∀x2 ∈ X2 (DL)

FDUAB12F
∗ (A)

m
4H1(x1) ≤ 0 , ∀x1 ∈ X1 (10)

4H2(x2) ≤ 0 , ∀x2 ∈ X2 (11)

∆H(x1, x2) ≤ 0, ∀x1 ∈ X1 , ∀x2 ∈ X2 (DL)

Our criterion leads to a less partial quasi-ordering of bidimensional distributions than
their first criterion but to a more partial ordering than their second criterion.
Expressing conditions of stochastic dominance in terms of Lorenz curves make them more

palatable for scientists in the fields of inequality measurement as Atkinson’s understood it
more than thirty years ago (Atkinson (1970)).

2.2 Inverse Stochastic dominance results

Let us define the right-inverse of a positive increasing and right-continuous function F (x)
with p the image in [0, 1] such that

F−1(p) = sup
F (x)≤p

x.

The generalized Lorenz (GL) curve (see Shorrocks (1983)) of the marginal cdf Fi for
i = 1, 2, LFi(p) is defined on [0, 1] by

LFi(p) =

pZ
0

F−1i (t)dt. (12)

In case where variable 1 represents income, the Generalized Lorenz curve of F1 shows the
cumulative total income received by the proportion p of the population, individuals being
ranked increasingly according to their income.
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We also need to define a new concept, the restricted generalized Lorenz (RGL) curve for
a given value of X2. For each x2 in X2, the function Fx2 is defined on X1 by the equation

Fx2(x1) = F (x1, x2)

For a given x2, Fx2(x1) is at most equal to F (a1, x2) = F2(x2). Let now define the right
inverse as

∀p ∈ [0, F2(x2)], F−1x2
(p) = sup

Fx2(x1)≤p
x1.

The RGL curve for the joint cdf on [0, F2(x2)] is described by

CFx2 (p) =
pZ
0

F−1x2
(t)dt (13)

and under the same proviso it gives the cumulative income received by the proportion p of
the population having at most a level of the compensated variable equal to x2.

Proposition 2.3 Let F and F ∗ two cdfs.

4H2(x2) ≤ 0 , ∀x2 ∈ X2 ⇔ LF2(p) ≥ LF∗2 (p), ∀p ∈ [0, 1] (AL)

∀x2 ∈ X2,
h
4H1(x1;x2) ≤ 0, ∀x1 ∈ X1 ⇒ CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0,min(F2(x2), F

∗
2 (x2)]

i
(BL)

∀x2 ∈ X2|F2(x2) ≤ F ∗2 (x2),
h
4H1(x1;x2) ≤ 0, ∀x1 ∈ X1 ⇔ CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F2(x2)]

i
(CL)

We do not get a complete set of conditions in terms of inverse stochastic dominance
equivalent to conditions obtained in Proposition 1. Nevertheless, we get a set of equivalence
and necessary conditions which can be proved to be useful in applied works. First of all,
dominance in term of the GL curve of the compensated variable is required to get dominance
for the class of utility functions considered. Second, dominance of the RGL curve of the
compensating variable for any value of the compensating variable, is also necessary on the
domain given by the intersection of the domains of definition of the two RGL curves. The
RGL-test expressed in condition BL or CL must be performed in a sequential way (SRGL-
test).
For the sake of illustration, consider the case of a discrete compensated variable, namely,

F2 and F ∗2 are two step functions with jumps at x21, ..., x2k for F2 and at x
∗
21, ..., x

∗
2l for F

∗
2 .

Condition CL indicates that nothing is required for all x2 strictly smaller than max(x21, x∗21).
For x2 = max(x21, x∗21), compute F2(.) and F ∗2 (.) and look at the RGL-curves of the com-
pensating variable for the subpopulation having a value of the compensated variable smaller
than or equal to max(x21,x∗21). This curve for the dominating distribution must be above
to that of the dominated distribution for all cumulated proportions of population smaller
than or equal to the minimum of F2(max(x21, x∗21)) and of F

∗
2 (max(x21, x

∗
21)). The first se-

quential checking is done. If it is positive, then go to the next step where we restrict our
attention to the values of x22, ..., x2k and of x∗22, ..., x

∗
2l strictly larger than max(x21, x

∗
21) and

we consider the minimum of these values. Call it m1. The RGL-test has to be performed
for x2 = m1. If it is positive, turn to the third sequential checking. Let consider the values
of x22, ..., x2k and of x∗22, ..., x

∗
2l strictly larger than m1 and consider the minimum of these
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values. Call it m2 and so on and so forth, up to the last sequential checking which occurs
for x2 = max(x2k, x∗2l). Here, the comparison is tantamount to perform the classic GL test
for the compensating variable, since F2(max(x2k, x∗2l)) = F ∗2 (max(x2k, x

∗
2l)) = 1. It turns out

that the SRGL-test is only sufficient when the distribution of the compensating variable for
F dominates its counterpart for F ∗ to the first order. When it is not the case, it means
that there exists values of the compensating variable such that the proportion of individuals
having at most this value is larger in F than in F ∗. Condition B implies that it cannot
happen for the smallest value of x2 . It can also be observed that

∀x2 ∈ X2|F ∗2 (x2) ≤ F2(x2),h
4H1(x1;x2) ≤ 0, ∀x1 ∈ [0, F−12 (F ∗2 (x2)]⇔ CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F

∗
2 (x2)]

i
.

So roughly speaking, checking the RGL-condition is sufficient in the the bottom part of the
joint distribution but not in the middle or top part.
The interest of obtaining an equivalence in terms of concentration curves of second sto-

chastic dominance term such as 4H1(x1;x2) goes beyond the framework of this article and
allows to interpret the results achieved by authors like Jenkins and Lambert (1993), Chambaz
and Maurin (1998), Lambert and Ramos (2002), and Fleurbaey et al.(2001a) who considered
the need approach when the marginal distribution of needs differ between the two distrib-
utions. For instance, for the family of utility functions considered by Moyes (1999) and
Bazen and Moyes (2001), one gets a complete characterization result using the concept of
RGL-curve. These authors considered the following set of utility functions.

Let U1 = {U1, U2 ≥ 0, U11 ≤ 0, U12 ≤ 0, U121 ≥ 0}. (14)

The marginal utility with respect to the compensating variable is no more required to be
decreasing. Proposition 2 states that the SRGL test is only sufficient when the distribution of
the compensating variable for F dominates its corresponding distribution F ∗to the first order.
In that case, a necessary and a sufficient condition involving the RGL-curve is obtained.

Corollary 2.4 Let F and F ∗ two cdfs.

FDU1F ∗ (A0)

m
4F2(x2) ≤ 0 , ∀x2 ∈ X2 (B0)

CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F2(x2)], ∀x2 ∈ X2 (C0)

Proof. Using the proof of proposition 1, it is readily shown that A0 is equivalent to
B0 and C. For proof of sufficiency, see equation 29 in the Appendix. Equivalence CL in
Proposition 2 shows that in presence of B0, C is equivalent to C0.
Combining Proposition 2 and Corollary 1, we find both a sufficient condition and a

necessary one to check dominance for the family U2.
Corollary 2.5 Let F and F ∗ two cdfs.

4F2(x2) ≤ 0 , ∀x2 ∈ X2 and CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F2(x2)],∀x2 ∈ X2 (B0&C0)

⇓
FDU1F ∗ (A)

⇓
LF2(p) ≥ LF∗2 (p) , ∀p ∈ [0, 1] and CFx2 (p) ≥ CF∗x2 (p) ∀p ∈ [0,min(F2(x2), F

∗
2 (x2)],∀x2 ∈ X2,

(AL&BL)
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The link of the SRGL criterion with the SGL one pionnered by AB2 will become apparent
in the particular case of identical marginal distributions of the compensating variable. Let
define for a given x2 and for any x1 ∈ X1

Gx2(x1) =
Fx2(x1)

F2(x2)

and for any p ∈ [0, 1]
G−1x2 (p) = sup

Gx2 (x1)≤p
x1.

The GL-curve corresponding to the subpopulation for which the value of the compensated
variable is at most x2 is defined by

∀p ∈ [0, 1], LFx2
(p) =

pZ
0

G−1x2 (t)dt. (15)

If the marginal distributions of the compensating variable are identical, then our criterion
boils down to the SGL one and we are back to the “need approach” considered by AB2. In
this particular setting, we have extended their result to the case of a continuous distribution
of needs.

Corollary 2.6 Let F and F ∗ two cdfs such that F2 ≡ F ∗2 .

FDU1F ∗ (A)

m
LFx2

(p) ≥ LFx2
(p) , ∀p ∈ [0, 1], ∀x2 ∈ X2 (DL)

Proof. Condition BL in proposition 2 is satisfied by assumption. Condition CL becomes:∀x2 ∈
X2, CFx2 (p) ≥ CF∗x2 (p) ∀p ∈ [0, F2(x2], which is indeed equivalent to condition DL.

2.3 Introducing transfer sensivity

We have already introduced conditions on the signs of the third cross-partial. A point worth
noting about the that four signs of third partial derivatives of the utility function resume
all the information at this stage, U111, U222, U121, U212. In the litterature, there has been
some interest in posing the sign of the direct third-order partials. Transfer sensitivity (see
Shorrocks and Foster (1987) for the general study of transfer sensivity and Lambert and
Ramos (2001) for an application to the needs approach), roughly speaking, means that the
planner is more sensible to transfers performed at the bottom of the distribution than at
the top. Transfer sensitivity is equivalent to requiring the positivity of the third partial
derivative. One may be concerned by imposing transfer sensivity to either the marginal
distribution of the compensating variable or the marginal distribution of the compensated
variable. Consequently, we define the following sets of utility functions.

Let U3= {U1, U2 ≥ 0, U11 ≤ 0, U222 ≥ 0, U22 ≤ 0, U12 ≤ 0, U121 ≥ 0} (16)

Let U4= {U1, U2 ≥ 0, U11 ≤ 0, U111 ≥ 0, U22 ≤ 0, U12 ≤ 0, U121 ≥ 0} (17)

We need to define the third degree stochastic term for the marginal distributions Li(xi) =
xiR
0

Hi(s)ds, i = 1, 2. Then, we obtain the following equivalence.
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Proposition 2.7 Let F and F ∗ two cdfs. (i)F D∗
U4 F

∗ ⇔ FDU2F ∗ and (ii)

f DU3 f∗ (A3)

m
4H2(a2) ≤ 0 (B3)

4H1(x1;x2) ≤ 0 , ∀x2 ∈ X2, ∀x1 ∈ X1 (C)

4L2(x2) ≤ 0, ∀x2 ∈ X2 (D3)

Thus, requiring transfer sensitivity with respect to the marginal distribution of the com-
pensating variable does not help to obtain a less partial quasi-ordering of distributions than
that corresponding to U2 class. On the opposite, we obtain less stringent conditions of dom-
inance when imposing transfer sensitivity with respect to the marginal distribution of the
compensated variable. Condition D3 is the standard condition of third degree stochastic
dominance applied to the marginal distribution of the compensated variable and, as usual,
it must be supplemented by a terminal condition of second degree stochastic dominance
(Condition B3) which means that the average of the compensating variable is larger for the
the dominant distribution than the one for the dominated distribution. Looking to the three
families U1,U2,U3 which correspond respectively to a first, second and third degree perspec-
tive on the compensated variable, we yield a less and less demanding criterion and thus a
less and less partial quasi-ordering.
We finally define the following set of utility functions.

Let U5= {U1, U2 ≥ 0, U11 ≤ 0, U122 ≥ 0, U22 ≤ 0, U12 ≤ 0, U121 ≥ 0} (18)

The additional assumption (U122 ≥ 0 ) must be put together with the assumption that
U12 ≤ 0 to be interpreted correctly. We already now that marginal utility of income is
decreasing with the level of the second attribute. Now we impose that it decreases with a
decreasing rate relative to the level of the compensated variable. Since the handicap or the
need is just the opposite of the second attribute, the compensation is all the more required
that the handicap is strong, i.e. that the level of the second attribute is low. As shown by
the next proposition, it turns out that this additional condition does not change the criterion
of implementation of dominance.

Proposition 2.8 Let F and F ∗ two cdfs. FDU4 F ∗ ⇔ FDU2 F ∗

3 Three Goods Case Results

Trying to generalize the two goods case result comes as a natural extension. However, it is
not a trivial one and the consideration of the three good case sheds light on the difficulties
of the exercice. It reveals the natural complexity of any generalization, while indicating the
road for promising results.
A trivariate distribution is figured out by a random variable X = (X1, X2, X3) whose

joint associated cdf is denoted F on R2+ with finite support included in A1×A2×A3 = [0, a1]
× [0, a2]x [0, a3]. Fi stands for the marginal cdf defined on R+, i = 1, 2, 3. By the Jierina
theorem, there exists a conditional cdf of X1 with respect to X2 and X3 denoted F 23

1 and a
conditional cdf F 3

2 of X2 with respect to X3 such that for any (x1, x2, x3) ∈ A1 ×A2 ×A3

F (x1, x2, x3) =

Z
[0,x2]×[0,x3]

F 23
1 (x1|X2 = r,X3 = t)dF 3

2 (r|X3 = t)dF3(t). (19)
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The welfare associated to F is given by

WF :=

Z
A1×A2xA3

U(x1, x2, x3)dF (x1, x2, x3)

and the welfare variation between the two situations is now defined as

4WU :=WF −WF∗ :=

Z
A1×A2xA3

U(x1, x2,x3)4dF (x1, x2, x3).

In performing the integration and in presenting the results, it is convenient to define5

Hi(xi) =
xiR
0

Fi(r)dr, i = 1, 2, 3

Hi(xi;xj, xk) =
xiR
0

F (r, xj,xk)dr and Hi(xi;xj, ak) = Hi(xi;xj) for any i, j, k.

X3 always plays the role of a compensated variable, while X1 is always a compensating
variable. As for X2, we consider two cases. In the first one, X2 plays both roles. In the
second one, it is only a compensated variable.
In the first configuration examined, the first variable can compensate for both deficiencies

in the two other variables. Besides, the second variable can be used to compensate for a
low level in the third variable as well. This configuration is labelled the full compensation
situation. As an illustration in the spirit of our second illustration given in Section 2, suppose
that the social planner has to evaluate the welfare of dynasties of three generations. X1 stands
for the life cycle income (or its rank)of of the current dynastie while X2 (respectively X3)
stands for the life cycle income of the fathers’ (resp. grandfathers’) dynasty. Income of the
past generations are viewed as handicaps for the realization of the income of the present
generation.

Let U6 = {U1, U2, U3 ≥ 0, U11 ≤ 0, U22 ≤ 0, U33 ≤ 0,
U12 ≤ 0, U13 ≤ 0, U23 ≤ 0, U121 ≥ 0, U131 ≥ 0, U232 ≥ 0, U123 ≥ 0, U1123 = 0}

Except U123 ≥ 0 and U1123 = 0, the other signs are just a natural extension to the three
goods case of the assumptions made in the two goods case. The former restriction must be
put together with the assumption that U12 ≤ 0 to be interpreted accuretly. For instance,
in the dynasty story, we already now that marginal utility of the son’s income is decreasing
with the level of the father’s income. Now we impose that it decreases with a decreasing rate
relative to the level of the grandfather’s income. Since the handicaps are just the opposite
of the attributes, the compensation is all the more required that the handicap is strong, i.e,
that the level of the grandfather’s income is low. The latter assumption means that the
decline of the social marginal utility of income is additively separable in attributes 2 and 3.

5In the proofs, the letter H always means that there exists a variable to which F has been integrated
once. This (these) variable(s) appears as a subscript. The semi-colon indicates that the variable at the
right of the semi-colon has been "integrated" once less than the variable at the left. A comma between two
variables reveals that they have been "integrated" the same number of times.
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Proposition 3.1 The Full Compensation Theorem. Let F and F ∗ be two CdFs.

FDU6 F ∗ (A5)

m
4H3(x3) ≤ 0 , ∀x3 ∈ X3, (B5)

∆H1(x1;x2) ≤ 0,∀xi ∈ Xi, i = 1, 2 (C5)

∆H1(x1;x3) ≤ 0,∀xi ∈ Xi, i = 1, 3 (D5)

∆H1(a1;x2, x3) ≤ 0,∀xi ∈ Xi, i = 2, 3 (E5)

∆H2(x2; x3) ≤ 0, ∀xi ∈ Xi, i = 2, 3 (F5)

Proposition 2 allows to find the counterpart of the second degree stochastic dominance
conditions in terms of Lorenz curves. Conditon B5 requires that the GL curve of the com-
pensating variable x3 is above for the dominant distribution. The other conditions requires
to define the associated RGL curves. For any i, j, k = 1, 2, 3, for each xj in Xj, the function
F i
xj
is defined on Xi by the equation

F i
xj
(xi) = F (xi, xj, ak).

For a given xj, F i
xj
(xi) is at most equal to F (ai, xj, ak) = Fj(xj). The right inverse is

given by
∀p ∈ [0, Fj(xj)], F

i−1
xj
(p) = sup

F i
xj
(xi)≤p

xi.

Let define the RGL curve for the joint distribution CDF on [0, F2(x2)] by

CF i
xj
(p) =

pZ
0

F i−1
xj
(t)dt (20)

Finally Fx2,x3(x1) = F (x1, x2, x3)

Corollary 3.2 If FDU5 F ∗, then

CF 1x3 (p) ≥ LF∗x3
(p) , ∀p ∈ [0, 1], (BL3)

& CF 1x2 (p) ≥ CF∗1x2 (p), ∀p ∈ [0,min(F2(x2), F
∗
2 (x2)],∀x2 ∈ X2, (CL12)

& CF1x3 (p) ≥ CF∗1x3 (p), ∀p ∈ [0,min(F3(x3), F
∗
2 (x3)],∀x3 ∈ X3, (DL13)

& CF 2x3 (p) ≥ CF∗2x3 (p), ∀p ∈ [0,min(F3(x3), F
∗
2 (x3)],∀x3 ∈ X3, (DL23)

&

a1Z
0

x1∆dFx2,x3(x1)dx1 ≥ 0, ∀xi ∈ Xi, i = 2, 3. (EL)

Proof. To derive condition EL, it suffices to integrate by part condition D5.
These necessary conditions are sufficient when the marginal distributions of X2 and X3

for F dominate stochasticly at order 1 their counterparts for F ∗. Conditions CL12,DL13,DL23

are easy to remenber. The SRGL test has to be performed two by two. It is convenient
that there is only one compensated attributed used to defined the groups according to which
one has to check dominance. Mind you, this is not true for the last condition. Indeed, a
subgroup is described by a maximal value for each compensated variable. For each subgroup
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so defined, the average income must be larger for the dominant distribution than for the
dominated disitribution. It can be noticed that this condition vanishes, when U123 = 0,
namely when the marginal utility function of the compensating good is separable in the two
compensated goods.
Introducing more separability assumptions helps us to specify some interesting particu-

lar cases of the broad one examined above. Suppose that the first attribute compensates
the second one, the second compensating the third - there is a chain compensation. More
precisely, we are interested in finding conditions ensuring dominance for the following class.

Let U7 = {U1, U2, U3 ≥ 0, U11 ≤ 0, U22 ≤ 0, U33 ≤ 0,
U12 ≤ 0, U23 ≤ 0, U13 = 0, U121 ≥ 0, U232 ≥ 0}

The following example provides an illustration of the restrictions imposed on the signs of the
social marginal valuations. We intend to design a social welfare function which generates
daily choices made by hospitals to allocate resources among ill persons. Assume that the
first attribute is income, the second attribute is qalys, the third attribute is age. Let us
remind the reader that qalys (quality-adjusted life years) are computed as extra years of life
a given treatment gives people, adjusted for quality; better years count more that worse ones.
The traditional assumptions of increasingness and concavity with respect to each variable
separately are not likely open to debate. For instance, regarding the age variable, it is
common sense to say that an additonal year of life provides extra pleasure at any age, but it
is likely more pronounced when you are young. In the following reasoning, it is important to
remind that a young is just a person “poor in length of life”. Consider now a young and and
old person for which the qalys associated to some similar treatment are identical. It turns out
that the priority is generaly given to the young in that circumstance, see for instance Barrett
(2002), which translates in imposing the negativity of U23. I might be the case also that the
poor person will not have anything to pay at hospital, even not the board, as for instance in
France with the CMU (Universal medical covering), a case figured out by the negativity of
U12. It is difficult to find examples of tax or transfer system which discriminate according
to age. The age factor, per se, does not seem to represent a relevant characteristic for
redistribution. The assumption of nullity of the U13, which implies an additive separability
of the utility function with respect to income and age, captures this idea. Therefore, income
can compensate for a low qalys, qalys can compensate for age meaning that young get some
priority, but income is not used to compensate young to be young. We supplement these
assumptions by adding that compensation is all the more necessary that people are poor
in the compensated variables. The priority for a medical treatment will become even more
obvious if one of the ill person is just a child (U232 ≥ 0), while the choice between two old
persons will become less transparent on this basis. A full coverage of the medical treatment
is all the more required than the person is poor (U121 ≥ 0).

Proposition 3.3 The Chain Compensation Theorem. Let F and F ∗be two CdFs..

FDU7F ∗ (A6)

m
4H3(x3) ≤ 0 , ∀x3 ∈ X3 (B5)

∆H1(x1;x2) ≤ 0 , ∀xi ∈ Xi , i = 1, 2 (C5)

∆H2(x2;x3) ≤ 0,∀xi ∈ Xi , i = 2, 3 (F5)
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As an application of corollary 4.1, conditions BL3,CL12 ,DL13,DL23 are necessary to check
dominance according to class U7. They are sufficient when the marginal distribution of
the third attribute dominates stochastically to the first order. Equivalently we can state a
companion corollary to corollary 2.1, when we drop condition U33 ≤ 0 from the list defining
U7 and we label U71 the corresponding family. We state

Corollary 3.4 Let F and F ∗be two CdFs..

FDU7F ∗ (A61)

m
4F3(x3) ≤ 0 , ∀x3 ∈ X3 (B61)

CF 1x3 (p) ≥ CF∗1x3 (p), ∀p ∈ [0,min(F3(x3)],∀x3 ∈ X3 (C61)

CF 2x3 (p) ≥ CF∗2x3 (p), ∀p ∈ [0,min(F3(x3)], ∀x3 ∈ X3. (D61)

The last configuration called the single compensation configuration occurs when the first
attribute can compensate for the two others attributes. For instance, income may compen-
sate for health and family size.

Let U8 = {U1, U2, U3 ≥ 0, U11 < 0, U22 < 0, U33 < 0,
U12 ≤ 0, U13 ≤ 0, U23 = 0, U121 > 0, U131 > 0}

The assumption of the nullity of U23 means that the utility function is additely separable
in the second and third attributes, namely,

U(x1, x2, x3) = ϕ(x1, x2) + ψ(x1, x3) (21)

Proposition 3.5 The Single Compensation Theorem. Let F and F ∗ two cdfs.

FDU8 F ∗ (A7)

m
4Hi(xi) ≤ 0 , ∀xi ∈ Xi i = 2, 3 (B5)

∆H1(x1;x2) ≤ 0,∀xi ∈ Xi, i = 1, 2 (C5)

∆H1(x1;x3) ≤ 0,∀xi ∈ Xi, i = 1, 3. (22)

If we dispose of conditions U22 ≤ 0 and U33 ≤ 0 from the list defining U8 and we label
U81 the corresponding family, we obtain

Corollary 3.6 Let F and F ∗be two CdFs.

FDU81F ∗ (A71)

m
4F2(x2) ≤ 0 , ∀x2 ∈ X2,& 4F3(x3) ≤ 0 , ∀x3 ∈ X3 (B71)

CF 1x2 (p) ≥ CF∗1x2 (p), ∀p ∈ [0,min(F2(x2)],∀x2 ∈ X2 (C71)

CF 2x3 (p) ≥ CF∗2x3 (p), ∀p ∈ [0,min(F3(x3)], ∀x3 ∈ X3. (D71)

The message which follows from studying the three-goods case is the following. Extending
the two-goods result to a more general setting is possible, but introducing some restrictive
separability assumptions is the price to pay for obtaining palatable results.
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4 Concluding comments

Our results provide some integration of the need approach and of the multidimensional one.
In applied studies, we have three methods at our disposal, the needs approach with fixed
marginal distributions of needs, the needs approch with variable marginal distributions of
needs, and the truly multidimensional one exposed here. In most and probably most cases
the first attribute is income and in the following we keep this in mind. If we are asking an
instructor manual, we likely suggest to limit the use of the former approach to an assessment
of the sole fiscal policy; the needs distribution may be influenced by other public policies and
keeping invariant the needs distribution helps to discard these other policies from debate.
At the opposite the multivariate approach seems well suited when we are keen to assess the
global impact of all public policies. In the middle, it may be the case that we would like to
appraise the global impact of public policy but we are uncomfortable with the sign of the
social marginal valuation of some need. The example of family size provides an illustration.
Is a child a social cost or a social good ? We brought some answers in section 2 which support
the view that a child may be viewed as as a cost, keeping the household budget constant.
But we admit that in that matter, there is some room for differences in opinions. In such a
case, choosing the needs approch with variable marginal distributions of needs may be right
choice.
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APPENDIX

Proof of Proposition 2.1:
Sufficiency.Using the extension of Fubini’s theorem to conditional probability measures

(see Billingsley (1986) exercice 18.25 p.247) we write,

WF =

Z
A2

Z
A1

U(x1, x2)dF
2
1 (x1|X2 = x2)

 dF2(dx2). (23)

Consider the inner integral. U(x1, x2) is a differentiable function positive in A1 while
F 2
1 is an increasing right continuous function in A1. Then they have no common point of
discontinuity in A1. Then the classical formulae of integration by parts applies (see for
instance Billingsley 1986 theorem 18.4 p.240). It gives

Z
A1

U(x1, x2)dF
2
1 (x1|X2 = x2) = U(a1, x2)F

2
1 (a1|X2 = x2)− U(0, x2)F

2
1 (0|X2 = x2) (24)

−
Z
(0,a1]

U1(x1, x2)dF
2
1 (x1|X2 = x2)

or Z
1

U(x1, x2)dF
2
1 (x1|X2 = x2) = U(a1, x2)F

2
1 (a1|X2 = x2)

−
Z
A1

U1(x1, x2)dF
2
1 (x1|X2 = x2)

Integrating the second term of the RHS of the above expression by part once again and
substituting in (23), we get

WF =

Z
A2

U(a1, x2)F
2
1 (a1|X2 = x2)dF2(x2) (25a)

−
Z
A2

U1(a1, x2)Z
A1

F 2
1 (x1|X2 = x2)dx1

 dF2(x2) (25b)

+

Z
A2

Z
A1

U11(x1, x2)

Z
[0,x1]

F 2
1 (s|X2 = x2)dsdx1

 dF2(x2) (25c)

Integrating by part the first term of the RHS of the above expression gives,
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Z
A2

U(a1, x2)F
2
1 (a1|X2 = x2)dF2(x2) = U(a1, a2)

Z
A2

F 2
1 (a1|X2 = x2)dF2(x2)


−
Z
A2

U2(a1, x2)

 Z
[0,x2]

F 2
1 (a1|X2=t)dF2(t)

 dx2
Evaluating by using the definition of a conditional probability distribution (1),it reduces

to

Z
A2

U(a1, x2)F
2
1 (a1|X2 = x2)dF2(x2) = U(a1, a2)F (a1, a2) (26)

−
Z
A2

U2(a1, x2)F (a1, x2)dx2 (27)

Integrating by part the second term of the RHS of (25b) with respect to x2 gives

−
Z
A2

U1(a1, x2)Z
A1

F 2
1 (x1|X2 = x2)dx1

 dF2(x2) =
−U1(a1, a2)

Z
A2

Z
A1

F 2
1 (x1|X2 = x2)dx1

 dF2(x2)


+

Z
A2

U12(a1, x2)

 Z
[0,x2]

Z
A1

F 2
1 (x1|X2=t)dx1

 dF2(x2)
 dx2

By Fubini, Z
[0,x2]

Z
A1

F 2
1 (x1|X2=t)dx1

 dF2(x2)
 = Z

A1

 Z
[0,x2]

F 2
1 (x1|X2=t)dF2(x2)

 dx1 = Z
A1

F (x1, x2)dx1

it reduces to

−
Z
A2

U1(a1, x2)Z
A1

F 2
1 (x1|X2 = x2)dx1

 dF2(x2) = −U1(a1, a2)Z
A1

F1(x1)dx1

+

Z
A2

U12(a1, x2)

Z
A1

F (x1, x2)dx1

 dx2
Similarly, integrating by part the third term of (25c) with respect to x2, we obtainZ
A2

Z
A1

U11(x1, x2)

Z
[0,x1]

F 2
1 (s|X2 = x2)ds

 dF2(x2) =
Z
A1

U11(x1, a2)

Z
A2

 Z
[0,x1]

F 2
1 (s|X2 = x2)ds

 dF2(x2)

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−
Z
A2

Z
A1

U112(x1, x2)

 Z
[0,x2]

 Z
[0,x1]

F 2
1 (s|X2=s)ds

 dF2(x2)
 dx1dx2

which reduces to

=

Z
A1

U11(x1, a2)

 Z
[0,x1]

F1(s)ds

 dx1 (28)

−
Z
A2

Z
A1

U112(x1, x2)

 Z
[0,x1]

F (s, x2)ds

 dx1dx2
Recapitulating, it yields

WF = U(a1, a2)F (a1, a2)

−
Z
A2

U2(a1, x2)F2(x2)dx2

−U1(a1, a2)
Z
A1

F1(x1)dx1

+

Z
A2

U12(a1, x2)

Z
A1

F (x1, x2)dx1

 dx2
+

Z
A1

U11(x1, a2)

 Z
[0,x1]

F1(s)ds

 dx1
−
Z
A2

Z
A1

U112(x1, x2)

 Z
[0,x1]

F (s, x2)ds

 dx1dx2
Therefore
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∆WU =

Z
A1×A2

U(x1, x2)4dF (x1, x2)) = U(a1, a2)∆F (a1, a2) (29a)

−
a2Z
0

U2(a1, x2)∆F2(x2)dx2 (29b)

−U1(a1, a2)
a1Z
0

∆F1(x1)dx1 (29c)

+

a2Z
0

U12(a1, x2)

 a1Z
0

∆F (x1, x2)dx1

 dx2 (29d)

+

a1Z
0

U11(x1, a2)

 x1Z
0

∆F (s, a2)ds

 dx1 (29e)

−
a1Z
0

a2Z
0

U112(x1, x2)

 x1Z
0

∆F (s, x2)ds

 dx1dx2 . (29f)

It follows that integrating by part the second term in the RHS term and evaluating some
other terms yields

∆WU = U(a1, a2)∆F (a1, a2)− U2(a1, a2)∆H2(a2) (30)

+

a2Z
0

U22(a1, x2)∆H2(x2)dx2 (31)

−U1(a1, a2)∆H1(a1) +

a2Z
0

U12(a1, x2)∆H1(a1;x2)dx2 (32)

+

a1Z
0

U11(x1, a2)∆H1(x1)dx1 (33)

−
a1Z
0

a2Z
0

U112(x1, x2)∆H1(x1;x2) dx1dx2. (34)

The first term vanishes and, since Condition C implies ∆H1(x1) ≤ 0,∀(x1) ∈ X1, the
conclusion follows.
Necessity. The proof follows some standard argument (Fishburn and Vickson, 1978,

p76). Let us suppose that condition B is not fullfilled. Then there exists x∗2 ∈ X2 such that
∆H2(x

∗
2) > 0.

Let us define the utility function VB as follows.

∀ x1 ∈ X1, VB(x1, x2) = x2 − x∗2, ∀ x2 ≤ x∗2 and VB(x1, x2) = 0, ∀ x1 > x∗1.

It is readily shown that 4WV = −∆H2(x
∗
2). Clearly VB does not belong to U2, but it is

possible to find an approximation of VB which belongs to U2.
Let us supposed that condition C is not fullfilled. Then there exists (x∗1, x

∗
2 ) ∈ X1 x X2

such that ∆H1(x
∗
1;x

∗
2) > 0.
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Let us define the utility function VC such that

∀ x2 ≤ x∗2, ∀ x1 ≤ x∗1 VC(x1, x2) = x1 − x∗1, . (35)

otherwise VC(x1, x2) = 0, (36)

It is readily shown that 4WVC = −∆H1(x
∗
1;x

∗
2). Clearly VC does not belong to U2 but it

is possible to find an approximation of VC which belongs to U2.
Proof of proposition 2.3
i) Proof of AL

6.
Necessity. We can use Young inequality (see e.g. Genet (1976) theorem 1 p. 195) since

either F2(x2) = 0 or F−12 (x2) = 0. Iindeed it degenerates in our case in an equality,

x2Z
0

F2(s)ds = x2F2(x2)−
F2(x2)Z
0

F−12 (t)dt

which may be rewritten with q = F2(x2)

H2(x2) =

x2Z
0

F2(s)ds = qF−12 (q)−
qZ
0

F−12 (t)dt

and with a similar expression for H∗
2(x2) with q∗ = F ∗2 (x2) one yields

4H2(x2) = qF−12 (q)− q∗F
∗−1
2 (q∗)− [

qZ
0

F−12 (t)dt−
q∗Z
0

F ∗−12 (t)dt] (37)

or

4H2(x2) = qF−12 (q)− q∗F
∗−1
2 (q∗)− sgn(q − q∗)

qZ
q∗

F−12 (t)dt− [LF2(q
∗)− LF∗2 (q

∗) ]

Using F−12 (q) = F
∗−1
2 (q∗)

4H2(x2) =

F−12 (q)(q − q∗)− sgn(q − q∗)

qZ
q∗

F−12 (t)dt

− [LF2(q
∗)− LF∗2 (q

∗) ] (38)

Applying the mean-value theorem for integrals, the term in brackets is always positive,
and therefore we deduce that 4H2(x2) ≤ 0 ⇒ LF2(F

∗
2 (x2)) − LF∗2 (F

∗
2 (x2)) ≥ 0. Since

F ∗2 (x2) ∈ [0, 1], 4H2(x2) ≤ 0, ∀x2 ∈ X2 implies LF2(p) ≥ LF∗2 (p), ∀p ∈ [0, 1].
Sufficiency. Suppose that there exists q ∈ [0, 1] such that LF2(q) ≥ LF∗2 (q). Then, ∃

x2 ∈ X2|x2 = F−12 (q) and ∃ q∗ ∈ [0, 1] with q = F ∗2 (x2) such that equation (37) is valid. This
equation can be expressed as well as

4H2(x2) =

sgn(q∗ − q)

q∗Z
q

F ∗−12 (t)dt− (q∗ − q)F
∗−1
2 (q∗)

− [LF2(q)− LF∗2 (q) ]

6Shorrocks (1983) gives a proof of step 1 for a discrete probability based on the Hardy-Littlewood-Polya
theorem. Le Breton (1986) p.88-89 gives a proof for a general probability distribution based on Young
inequality. Our proof is adapted from his.
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Applying the mean-value theorem for integrals, the term in brackets is always negative
and LF2(q) ≥ LF∗2 (q).≥ 0 implies 4H1(F

−1
2 (q) ≤ 0.

Since the range of F−12 (p) is X2, LF2(p) ≥ LF∗2 (p), ∀p ∈ [0, 1] implies 4H2(x2) ≤ 0,
∀x2 ∈ X2.
ii) Proof of BL.
We consider two cases. In both cases, we choose a fixed x2 in X2.
Case 1. x2 ∈ X2 is such that F ∗2 (x2) ≤ F2(x2). We prove that 4H1(x1;x2) ≤ 0, ∀x1 ∈

X1 ⇒ CFx2 (p) ≥ CF∗x2 (p) , ∀p ∈ [0, F ∗2 (x2)].
Starting with the definition of H1(x1;x2) (7) and using Young inequality, one get

x1Z
0

Fx2(s)ds = x1Fx2(x1)−
Fx2 (x1)Z

0

F−1x2
(t)dt (39)

or with q = Fx2(x1) ∈ [0, F2(x2)]

H1(x1;x2) = F−1x2
(q)q −

qZ
0

F−1x2
(t)dt

and with a similar expression for H∗
1(x1;x2) with q∗ = F ∗x2(x1) ∈ [0, F ∗2 (x2)] one yields

4H1(x1;x2) = qF−1x2 (q)− q∗F ∗−1x2 (q
∗)− [

qZ
0

F−1x2 (t)dt−
q∗Z
0

F ∗−1x2 (t)dt] (40)

Since F ∗2 (x2) ≤ F2(x2),we have F ∗x2(x1) ≤ F2(x2), and the proof of (i) can be adapted

4H1(x1;x2) = qF−1x2
(q)− q∗F ∗−1x2

(q∗)− sgn(q − q∗)

qZ
q∗

F−1x2
(t)dt− [CFx2 (q∗)− CF∗x2 (q

∗) ]

Using F−1x2
(q) = F ∗−1x2

(q∗)

4H1(x1;x2) =

F−1x2
(q)(q − q∗)− sgn(q − q∗)

qZ
q∗

F−1x2
(t)dt

− [CFx2 (q∗)− CF∗x2 (q∗) ] (41)

Applying the mean-value theorem for integrals, the term in brackets is always positive,
and therefore we deduce that 4H1(x1;x2) ≤ 0 ⇒ CFx2 (F ∗x2(x1)) − CF∗x2 (F ∗x2(x1)) ≥ 0.
Since F ∗x2(x1) ∈ [0, F ∗2 (x2)], 4H1(x1;x2) ≤ 0, ∀x1 ∈ X1 implies CFx2 (p) ≥ CF∗x2 (p) , ∀p ∈
[0, F ∗2 (x2)].
Case 2. x2 ∈ X2 is such that F2(x2) < F ∗2 (x2). We prove that 4H1(x1;x2) ≤ 0, ∀x1 ∈

X1 ⇒ CFx2 (p) ≥ CF∗x2 (p) , ∀p ∈ [0, F2(x2)].
We start with 37 which remains valid. By assumption, 4H1(x1;x2) ≤ 0 for all x1. Then

it is also true for all x1 ∈ X1 such that F ∗x2(x1) ≤ F2(x2). In that case, the end of the
necessity of the proof of case1 remains valid and therefore we deduce that 4H1(x1;x2) ≤
0 ⇒ CFx2 (F ∗x2(x1)) − CF∗x2 (F ∗x2(x1)) ≥ 0. Since F ∗x2(x1) ∈ [0, F2(x2)], 4H1(x1;x2) ≤ 0,

∀x1 ∈ X1 implies CFx2 (p) ≥ CF∗x2 (p) , ∀p ∈ [0, F2(x2)]. Statement BL follows.
iii) Proof of CL. x2 ∈ X2 is such that F2(x2) < F ∗2 (x2).
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In view of BL, it suffices to prove that CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F2(x2)] implies
4H1(x1;x2) ≤ 0, ∀x1 ∈ X1.
Suppose that there exists q ∈ [0, F2(x2)] such that CFx2 (q) ≥ CF∗x2 (q). Then, ∃ x1 ∈

X1|x1 = F−1x2
(q) and there exists q∗ = F ∗x2(x1). Starting from Equation (37) which remains

valid, and using F2(x2) < F ∗2 (x2) which implies that q ≤ F ∗2 (x2), one gets

4H1(x1;x2) = qF−1x2
(q)−q∗F ∗−1x2

(q∗)+sgn(q∗−q)
q∗Z
q

F ∗−1x2
(t)dt− [

qZ
0

F−1x2
(t)dt−

qZ
0

F ∗−1x2
(t)dt]

or using F−1x2
(q) = F ∗−1x2

(q∗)

4H1(x1;x2) =

sgn(q∗ − q)

q∗Z
q

F ∗−1x2
(t)dt− F ∗−1x2

(q∗)(q∗ − q)

− [CFx2 (q)− CF∗x2 (q)]
Applying the mean-value theorem for integrals, the term in brackets is always negative and
CFx2 (q) − CF∗x2 (q) ≥ 0 implies 4H1(F

−1
x2
(q);x2) ≤ 0. Since the range of F−1x2

(p) is X1,

CFx2 (p) ≥ CF∗x2 (p), ∀p ∈ [0, F2(x2)] implies 4H1(x1;x2) ≤ 0, ∀x1 ∈ X1.
Proof of Proposition 2.7 (i)
Sufficiency Starting from the final expression for ∆WU in the proof of Proposition 1 and

integrating by part (33) with respect to x1 we get

∆WU = −U2(a1, a2)∆H2(a2) (42)

+

a2Z
0

U22(a1, x2)∆H2(x2)dx2 (43)

−U1(a1, a2)∆H1(a1) +

a2Z
0

U12(a1, x2)∆H1(a1;x2)dx2 (44)

+U11(a1, a2)∆L1(a1)−
a1Z
0

U111(x1, a2)∆L1(x1)dx1 (45)

−
a1Z
0

a2Z
0

U112(x1, x2)∆H1(x1;x2) dx1dx2. (46)

∆H1(x1; a2) ≤ 0⇒ ∆L1(x1) ≤ 0.The conclusion follows.
Necessity. Similar to proposition 2.1.
Proof of Proposition 2.7(ii)
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Sufficiency Starting from the final expression for ∆WU in the proof of Proposition 1 and
integrating by part (31) with respect to x2 we get

∆WU = −U2(a1, a2)∆H2(a2) (47)

+U22(a1, a2)∆L2(a2)−
a2Z
0

U222(a1, x2)∆L2(x2)dx2 (48)

−U1(a1, a2)∆H1(a1) +

a2Z
0

U12(a1, x2)∆H1(a1;x2)dx2 (49)

+

a1Z
0

U11(x1, a2)∆H1(x1)dx1 (50)

−
a1Z
0

a2Z
0

U112(x1, x2)∆H1(x1;x2) dx1dx2. (51)

The conclusion follows.
Necessity. For B3 and C3, see proof of proposition 2.1. Now suppose that D3 is not

satisfied. Then there exists x∗2 ∈ X1 such that ∆L1(x
∗
2) > 0

Let us define the utility function VD3 as follows.

∀ x1 ∈ X1, VD3(x1, x3) = −1/2(x3 − x∗3)
1/2, ∀ x3 ≤ x∗3 and VD3(x1, x3) = 0, ∀ x1 > x∗1.

It is readily shown that 4WV = −∆L1(x
∗
3). Clearly VD3 does not belong to U3, but it is

possible to find an approximation of VD3 which belongs to U3
Proof of Proposition 2.8
Sufficiency Starting from the final expression for ∆WU in the proof of Proposition 2.1

and integrating by part (32) with respect to x2 we get

∆WU = U(a1, a2)∆F (a1, a2)− U2(a1, a2)∆H2(a2) (52)

+

a2Z
0

U22(a1, x2)∆H2(x2)dx2 (53)

−U1(a1, a2)∆H1(a1) + U12(a1, a2)∆H(a1, a2)dx2 (54)

−
a2Z
0

U122(a1, x2)∆H(a1, x2)dx2 (55)

+

a1Z
0

U11(x1, a2)∆H1(x1)dx1 (56)

−
a1Z
0

a2Z
0

U112(x1, x2)∆H1(x1;x2) dx1dx2. (57)

Since ∆H(a1, x2) =
x2R
0

∆H1(a1; t)dt, checking ∆H1(x1; s) ≤ 0 for any s ensures that

∆H(a1, x2) ≤ 0 and the conclusion follows.
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Necessity. Identical to proposition 2.1
Proof of Proposition 3.1:
Sufficiency. We start from the definition of the welfare function in which the distribution

of the first variable is separated by conditioning.

WF =

Z
A2×A3

Z
A1

U(x1, x2, x3)dF
23
1 (x1|X2 = x2,X3 = x3)

 dF23(x2,x3). (58)

In the whole proof, the changes in ranks of integrations with respect to the different
variables are justified by Fubini theorem, which is not systematically signaled in the steps
of the proof. Integrating by parts the inner integral with respect to x1 gives

WF =

Z
A2×A3

U(a1, x2, x3)F
23
1 (a1|X2 = x2,X3 = x3)dF23(x2,x3)

−
Z

A2×A3

Z
A1

U1(x1, x2, x3)F
23
1 (x1|X2 = x2,X3 = x3) dx1

 dF23(x2,x3)
It is convenient to treat separately this two terms in order to present in the most economic

way the proofs of propositions 5 to 7. Let call T1 the first one and T2 the second one. Let first
evaluate T2. We start by integrating T2 with respect to x3. This necessitates to separate the
distributions of x2 and x3 by conditioning on x2 and by using Fubini. This is done first by
noticing that dF23(x2 , x3) = dF 2

3 (x3 |X2 = x2) dF2(x2) and then by using (1) which implies
thatZ

[0,x3]

F 23
1 (x1|X2 = x2, X3 = t) dF 2

3 (t |X2 = x2) = F 2
13(x1, x3|X2 = x2).

We get

T2 = −
Z
A2

Z
A1

U1(x1, x2, a3)F
2
13(x1, a3|X2 = x2) dx1

 dF2(x2) (59a)

+

Z
A2

 Z
A1×A3

U13(x1, x2, x3)F
2
13(x1, x3|X2 = x2) dx1dx3

 dF2(x2) (59b)

Integrating T2 once more with respect to x1 and denoting H2
13(x1;x3|X2 = x2) :=

x1Z
0

F 2
13(t, x3|X2 = x2)dt gives
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T2 = −
Z
A2

U1(a1, x2, a3)H
2
13(a1; a3|X2 = x2) dF2(x2)

+

Z
A2

Z
A1

U11(x1, x2, a3)H
2
13(x1; a3|X2 = x2)dx1

 dF2(x2)
+

Z
A2

Z
A3

U13(a1, x2, x3)H
2
13(a1;x3|X2 = x2) dx3

 dF2(x2)
−
Z
A2

 Z
A1×A3

U113(x1, x2, x3)H
2
13(x1;x3|X2 = x2) dx1dx3

 dF2(x2)
Finally integrating T2 with respect to x2 and using the fact that

Z
A2

H2
13(x1;x3|X2 =

x2) dF2(x2) = H1(x1;x2, x3) one yields

T2 = −U1(a1, a2, a3)H1(a1; a2, a3) (60a)

+

Z
A2

U12(a1, x2, a3)H1(a1;x2, a3)dx2 (60b)

+

Z
A1

U11(x1, a2, a3)H1(x1; a2, a3)dx1 (60c)

−
Z

A1×A2

U112(x1, x2, a3)H1(x1;x2, a3)dx1dx2 (60d)

+

Z
A3

U13(a1, a2, x3)H1(a1; a2, x3) dx3 (60e)

−
Z

A2×A3

U123(a1, x2, x3)H1(a1;x2, x3)dx2dx3 (60f)

−
Z

A1×A3

U113(x1, a2, x3)H1(x1; a2, x3)dx1dx3 (60g)

+

Z
A1×A2×A3

U1123(x1, x2, x3)H1(x1;x2, x3)dx1dx2dx3 (60h)

We now turn to get an expression for T1. We start by integrating it by part with respect
to x2. This necessitates to separate the distributions of x2 and x3 by conditioning on x3 and
by using Fubini. This is done first by noticing that dF23(x2 , x3) = dF 3

2 (x2 |X3 = x3) dF3(x3)
and then by using (1) the fact that

x2Z
0

F 23
1 (x1 |X2 = t,X3 = x3) dF

3
2 (t|X3 = x3) = F 3

12(x1, x2 |X3 = x3).
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We get

T1 =

Z
A3

U(a1, a2, x3)F
3
12(a1, a2|X3 = x3)dF (x3) (61)

−
Z
A3

Z
A2

U2(a1, x2, x3)F
3
12(a1, x2|X3 = x3) dx2 dF3(x3) (62)

We now integrate (61) with respect to x3 and (62) with respect to x2. To be able to do
it we need to know: (a) the primitive function of F 3

12(a1, a2|X3 = x3) with respect to x3 and
(b) the primitive function of F 3

12(a1, x2|X3 = x3) with respect to x2. The first primitive is
obtained as follows using (1).Z

[0,x3]

F 3
12(a1, a2 |X3 = x3) dF3(v). = F (a1, a2, x3) = F3(x3)

For the second primitive. let us define

H3
12(x2; a1|X3 = x3) :=

x2Z
0

F 3
12(a1, t |X3 = x3) dt

Therefore,

T1 = U(a1, a2, a3)F (a1, a2, a3) (63)

−
Z
A3

U3(a1, a2, x3)F3(x3) dx3 (64)

−
Z
A3

U2(a1, a2, x3)H
3
12(a2 ; a1|X3 = x3) dF3(x3) (65)

+

Z
A3

Z
A2

U22(a1, x2, x3)H
3
12(x2 ; a1|X3 = x3) dx2 dF3(x3) (66)

Finally we integrate the three last terms of the RHS of the above expression with respect
to x3. This implies to define

x3Z
0

H3
12(x2 ; a1|X3 = x3) dF3(x3) =

x3Z
0

x2Z
0

F 3
12(a1, t |X3 = x3) dtdF3(x3) =

x2Z
0

F (a1, t, x3 ) dt := H2(x2; a1, x3)
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We finally obtain

T1 = U(a1, a2, a3)F (a1, a2, a3) (67a)

−U3(a1, a2, a3)H3(a3) +

Z
A3

U33(a1, a2, x3)H3(x3) dx3 (67b)

−
Z
A3

U2(a1, a2, x3)H2(a2) +

Z
A3

U23(a1, a2, x3)H2(a2; a1, x3) dx3 (67c)

+

Z
A2

U22(a1, x2, a3)H2(x2) dx2 (67d)

−
Z
A3

Z
A2

U223(a1, x2, x3)H2(x2; a1, x3) dx2 dx3 (67e)

Therefore the expression for the welfare associated to F is given by

WF = U(a1, a2, a3)F (a1, a2, a3) (68a)

−U3(a1, a2, a3)H3(a3) +

Z
A3

U33(a1, a2, x3)H3(x3) dx3 (68b)

−
Z
A3

U2(a1, a2, x3)H2(a2) +

Z
A3

U23(a1, a2, x3)H2(a2; a1, x3) dx3 (68c)

+

Z
A2

U22(a1, x2, a3)H2(x2) dx2 (68d)

−
Z
A3

Z
A2

U223(a1, x2, x3)H2(x2; a1, x3) dx2 dx3 (68e)

−U1(a1, a2, a3)H1(a1; a2, a3) +

Z
A3

U13(a1, a2, x3)H1(a1; a2, x3)dx3 (68f)

+

Z
A2

U12(a1, x2, a3)H1(a1;x2, a3)dx2 −
Z
A2

Z
A3

U123(a1, x2,x3)H1(a1;x2, x3)dx2dx3 (68g)

+

Z
A1

U11(x1, a2, a3)H1(x1; a2, a3) dx1 −
Z
A3

Z
A1

U113(x1, a2, x3)H1(x1; a2, x3)dx1dx3 (68h)

−
Z
A2

Z
A1

U112(x1, x2, a3)H1(x1;x2, a3)dx1 dx2 (68i)

+

Z
A3

Z
A2

Z
A1

U1123(x1, x2, x3)H1(x1;x2, x3)dx1dx2dx3 (68j)
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Taking into account the assumptions, we obtain for the change in welfare

∆WU = −U3(a1, a2, a3)∆H3(a3) +

Z
A3

U33(a1, a2, x3)∆H3(x3) dx3 (69a)

−
Z
A3

U2(a1, a2, x3)∆H2(a2) +

Z
A3

U23(a1, a2, x3)∆H2(a2; a1, x3) dx3 (69b)

+

Z
A2

U22(a1, x2, a3)∆H2(x2) dx2 (69c)

−
Z
A3

Z
A2

U223(a1, x2, x3)∆H2(x2; a1, x3) dx2 dx3 (69d)

−U1(a1, a2, a3)∆H1(a1) +

Z
A3

U13(a1, a2, x3)∆H1(a1; a2, x3)dx3 (69e)

+

Z
A2

U12(a1, x2, a3)∆H1(a1;x2, a3)dx2 −
Z
A2

Z
A3

U123(a1, x2,x3)∆H1(a1;x2, x3)dx2dx3 (69f)

+

Z
A1

U11(x1, a2, a3)∆H1(x1) dx1 −
Z
A3

Z
A1

U113(x1, a2, x3)∆H1(x1; a2, x3)dx1dx3 (69g)

−
Z
A2

Z
A1

U112(x1, x2, a3)∆H1(x1;x2, a3)dx1 dx2 (69h)

The conclusion follows.
Necessity.
Let us suppose that condition B5 is not fullfilled. Then there exists x∗3 ∈ X2 such that

∆H3(x
∗
3) > 0.

Let us define the utility function VB5 as follows.

∀ x1 ∈ X1,∀ x2 ∈ X2, , VB5(x1, x2, x3) = x3 − x∗3 ∀ x3 ≤ x∗3 and VB5(x1, x2) = 0, ∀ x3 > x∗3.

It is readily shown that 4WVB5
= −∆H3(x

∗
3). Clearly VBB5

does not belong to U5, but
it is possible to find an approximation of VBB5

which belongs to U5.
Let us supposed that condition C5 is not fullfilled. Then it must be true that there exists

(x∗2, x
∗
3 ) ∈ X2 xX3 such that ∆H2(x

∗
2; a1, x

∗
3) > 0.Let us define the utility function VD5 such

that

∀ x1 ≤a1, ∀ x2 ≤ x∗2 , ∀x3 ≤ x∗3, VD5(x1, x2,x3) = x2 − x∗2, (70)

otherwise VD5(x1, x2,x3) = 0, (71)

It is readily shown that 4WVD5
= −∆H2(x

∗
2; a1 , x

∗
3). Clearly VD5 does not belong to U5 but

it is possible to find an approximation of VD5 which belongs to U5.
Let us supposed that condition D5 is not fullfilled. Then there exists (x∗1, x

∗
2) ∈ X1 x X2

such that ∆H1(x
∗
1;x

∗
2, a3) > 0. Let us define the utility function VD5 such that

∀ x1 ≤ x∗1, ∀ x2 ≤ x∗2, and for x3 ≤ a3 VD5(x1, x2,x3) = x1 − x∗1, (72)

otherwise VD5(x1, x2,x3) = 0, (73)
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It is readily shown that 4WVD5
= −∆H1(x

∗
1;x

∗
2, a3). Clearly VD5 does not belong to U5

but it is possible to find an approximation of VD5 which belongs to U5.
Let us supposed that condition E5 is not fulfilled. Then it must be true that there exists

(x∗1, x
∗
3) ∈ X1 xX3 such that ∆H1(x1; a2, x3) > 0.Let us define the utility function VE5 such

that

∀ x1 ≤x∗1, ∀ x2 ≤ a2 , ∀x3 ≤ x∗3, VE5(x1, x2,x3) = x1 − x∗1, (74)

otherwise VE5(x1, x2,x3) = 0, (75)

It is readily shown that4WVE5
= −∆H1(x1; a2, x3). Clearly VE5 does not belong to U5 but it

is possible to find an approximation of VE5 which belongs to U5. The proof for the necessity
of F5 is similar.
Proof of Proposition 3.3:
Sufficiency. The expression for T2 in equation (59) taking into account that U13 = 0

reduces to :

T2 = −
Z
A2

Z
A1

U1(x1, x2, a3)F
2
13(x1, a3|X2 = x2) dx1

 dF2(x2)
Performing the same integrations than in Proposition 5’s proof we get

T2 = −U1(a1, a2, a3)H1(a1; a2, a3)

+

Z
A2

U12(a1, x2, a3)H1(a1;x2, a3)dx2

+

Z
A1

U11(x1, a2, a3)H1(x1; a2, a3)dx1

−
Z

A1×A2

U112(x1, x2, a3)H1(x1;x2, a3)dx1dx2
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The expression for T1 in equation (67) remains valid. Therefore the expression for the
change in welfare becomes

∆WU = −U3(a1, a2, a3)∆H3(a3) +

Z
A3

U33(a1, a2, x3)∆H3(x3) dx3 (76a)

−
Z
A3

U2(a1, a2, x3)∆H2(a2) +

Z
A3

U23(a1, a2, x3)∆H2(a2; a1, x3) dx3 (76b)

+

Z
A2

U22(a1, x2, a3)∆H2(x2) dx2 (76c)

−
Z
A3

Z
A2

U223(a1, x2, x3)∆H2(x2; a1, x3) dx2 dx3 (76d)

−U1(a1, a2, a3)∆H1(a1) (76e)

+

Z
A2

U12(a1, x2, a3)∆H1(a1;x2, a3)dx2 (76f)

+

Z
A1

U11(x1, a2, a3)∆H1(x1) dx1 (76g)

−
Z
A2

Z
A1

U112(x1, x2, a3)∆H1(x1;x2, a3)dx1 dx2 (76h)

Necessity. See proof of proposition 3.1.
Proof of Proposition 3.5:
Sufficiency. The expression for T2 obtained in Proposition 5’s proof remains valid. To

compute T1 we change the integration path. We start by integrating it by part with respect
to x3. This necessitates to separate the distributions of x3 and x2 by conditioning on x2 and
by using Fubini.
We get

T1 =

Z
A2

U(a1, x2, a3)F
2
13(a1, a3|X2 = x2) dF2(x2) (77)

−
Z
A2

Z
A3

U3(a1, x2, x3)F
2
13(a1, x3|X2 = x2) dx3

 dF2(x2) (78)

We now integrate the RHS of the above expression with respect to x2. We obtain
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T1 = U(a1, a2, a3)F (a1, a2, a3)

−
Z
A2

U2(a1, x2, a3)F (a1, x2, a3) dx2

−
Z
A3

U3(a1, a2, x3)F (a1, a2, x3)dx3

+

Z
A2×A3

U32(a1, x2, x3)F (a1, x2, x3) dx2dx3

Since U32 = 0, the last term vanishes. Finally we integrate the second term of the above
expression with respect to x2 and the third term with respect to x3. One yields

T1 = U(a1, a2, a3)F (a1, a2, a3)

−U2(a1, a2, a3)H2(a2; a1, a3)

+

Z
A2

U22(a1, x2, a3)H2(x2; a1, a3) dx2

−U3(a1, a2, a3)H3(a3; a1, a2)

+

Z
A3

U33(a1, a2, x3)H3(x3; a1, a2)dx3

Therefore the expression for the change in welfare becomes

∆WU = −U2(a1, a2, a3)∆H2(a2)

+

Z
A2

U22(a1, x2, a3)∆H2(x2) dx2

−U3(a1, a2, a3)∆H3(a3)

+

Z
A3

U33(a1, a2, x3)∆H3(x3)dx3

−U1(a1, a2, a3)∆H1(a1) +

Z
A3

U13(a1, a2, x3)∆H1(a1; a2, x3)dx3

+

Z
A2

U12(a1, x2, a3)∆H1(a1;x2, a3)dx2 −
Z
A2

Z
A3

U123(a1, x2,x3)∆H1(a1;x2, x3)dx2dx3

+

Z
A1

U11(x1, a2, a3)∆H1(x1) dx1 −
Z
A3

Z
A1

U113(x1, a2, x3)∆H1(x1; a2, x3)dx1dx3

−
Z
A2

Z
A1

U112(x1, x2, a3)∆H1(x1;x2, a3)dx1 dx2

+

Z
A3

Z
A2

Z
A1

U1123(x1, x2, x3)∆H1(x1;x2, x3)dx1dx2dx3

36



Since the utility function has the form (21), U123 = 0, and U1123 = 0. The conclusion
follows.
Necessity. See proof of proposition 3.1.

37


